These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 33637129)
1. Dapagliflozin attenuates hypoxia/reoxygenation-caused cardiac dysfunction and oxidative damage through modulation of AMPK. Tsai KL; Hsieh PL; Chou WC; Cheng HC; Huang YT; Chan SH Cell Biosci; 2021 Feb; 11(1):44. PubMed ID: 33637129 [TBL] [Abstract][Full Text] [Related]
2. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis Chen W; Zhang Y; Wang Z; Tan M; Lin J; Qian X; Li H; Jiang T Front Pharmacol; 2023; 14():1078205. PubMed ID: 36891270 [TBL] [Abstract][Full Text] [Related]
3. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Ma L; Zou R; Shi W; Zhou N; Chen S; Zhou H; Chen X; Wu Y Theranostics; 2022; 12(11):5034-5050. PubMed ID: 35836807 [No Abstract] [Full Text] [Related]
4. Roflumilast reduces myocardial ischemia reperfusion injury in vivo and in vitro by activating the AMPK signaling pathway. Liao B; Han Z Exp Ther Med; 2023 Jun; 25(6):302. PubMed ID: 37229319 [TBL] [Abstract][Full Text] [Related]
5. Dapagliflozin attenuates high glucose-induced endothelial cell apoptosis and inflammation through AMPK/SIRT1 activation. Faridvand Y; Kazemzadeh H; Vahedian V; Mirzajanzadeh P; Nejabati HR; Safaie N; Maroufi NF; Pezeshkian M; Nouri M; Jodati A Clin Exp Pharmacol Physiol; 2022 Jun; 49(6):643-651. PubMed ID: 35274762 [TBL] [Abstract][Full Text] [Related]
6. IL-20 promotes hypoxia/reoxygenation-induced mitochondrial dysfunction and apoptosis in cardiomyocytes by upregulating oxidative stress by activating the PKC/NADPH oxidase pathway. Tsai KL; Hsieh PL; Chou WC; Hung CH; Yang HL; Chang YC; Chu PM; Chang MS; Chan SH Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165684. PubMed ID: 31953216 [TBL] [Abstract][Full Text] [Related]
7. Wenxin Granule Ameliorates Hypoxia/Reoxygenation-Induced Oxidative Stress in Mitochondria via the PKC- Jin Q; Jiang Y; Fu L; Zheng Y; Ding Y; Liu Q Oxid Med Cell Longev; 2020; 2020():3245483. PubMed ID: 32566078 [TBL] [Abstract][Full Text] [Related]
8. AMPK Contributes to Cardioprotective Effects of Pterostilbene Against Myocardial Ischemia- Reperfusion Injury in Diabetic Rats by Suppressing Cardiac Oxidative Stress and Apoptosis. Kosuru R; Cai Y; Kandula V; Yan D; Wang C; Zheng H; Li Y; Irwin MG; Singh S; Xia Z Cell Physiol Biochem; 2018; 46(4):1381-1397. PubMed ID: 29689567 [TBL] [Abstract][Full Text] [Related]
9. Dapagliflozin attenuates high glucose-and hypoxia/reoxygenation-induced injury via activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy in H9c2 cardiomyocytes. Tu W; Li L; Yi M; Chen J; Wang X; Sun Y Arch Physiol Biochem; 2024 Dec; 130(6):649-659. PubMed ID: 37655809 [TBL] [Abstract][Full Text] [Related]
10. Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: the role of the AMPK-SIRT3 signaling pathway. Yu LM; Dong X; Xue XD; Zhang J; Li Z; Wu HJ; Yang ZL; Yang Y; Wang HS Food Funct; 2019 May; 10(5):2752-2765. PubMed ID: 31041965 [TBL] [Abstract][Full Text] [Related]
11. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Yu L; Gong B; Duan W; Fan C; Zhang J; Li Z; Xue X; Xu Y; Meng D; Li B; Zhang M; Bin Zhang ; Jin Z; Yu S; Yang Y; Wang H Sci Rep; 2017 Jan; 7():41337. PubMed ID: 28120943 [TBL] [Abstract][Full Text] [Related]
12. Dapagliflozin Attenuates Na Ye Y; Jia X; Bajaj M; Birnbaum Y Cardiovasc Drugs Ther; 2018 Dec; 32(6):553-558. PubMed ID: 30367338 [TBL] [Abstract][Full Text] [Related]
13. Cardioprotection by acetylcholine: a novel mechanism via mitochondrial biogenesis and function involving the PGC-1α pathway. Sun L; Zhao M; Yu XJ; Wang H; He X; Liu JK; Zang WJ J Cell Physiol; 2013 Jun; 228(6):1238-48. PubMed ID: 23139024 [TBL] [Abstract][Full Text] [Related]
14. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling. Bi X; He X; Xu M; Zhao M; Yu X; Lu X; Zang W Cell Cycle; 2015 Aug; 14(15):2461-72. PubMed ID: 26066647 [TBL] [Abstract][Full Text] [Related]
15. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Zheng W; Liu C Anatol J Cardiol; 2019 Sep; 22(3):102-111. PubMed ID: 31475956 [TBL] [Abstract][Full Text] [Related]
16. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation injury through AMPK/eNOS/PGC-1α signaling pathway. Hu L; Zhou L; Wu X; Liu C; Fan Y; Li Q Int J Clin Exp Pathol; 2014; 7(11):7378-88. PubMed ID: 25550773 [TBL] [Abstract][Full Text] [Related]
17. Glucagon-like peptide-1 attenuates endoplasmic reticulum stress-induced apoptosis in H9c2 cardiomyocytes during hypoxia/reoxygenation through the GLP-1R/PI3K/Akt pathways. Guan G; Zhang J; Liu S; Huang W; Gong Y; Gu X Naunyn Schmiedebergs Arch Pharmacol; 2019 Jun; 392(6):715-722. PubMed ID: 30762075 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial LonP1 protects cardiomyocytes from ischemia/reperfusion injury in vivo. Venkatesh S; Li M; Saito T; Tong M; Rashed E; Mareedu S; Zhai P; Bárcena C; López-Otín C; Yehia G; Sadoshima J; Suzuki CK J Mol Cell Cardiol; 2019 Mar; 128():38-50. PubMed ID: 30625302 [TBL] [Abstract][Full Text] [Related]
19. Acetylcholine attenuates hypoxia/ reoxygenation-induced mitochondrial and cytosolic ROS formation in H9c2 cells via M2 acetylcholine receptor. Miao Y; Zhou J; Zhao M; Liu J; Sun L; Yu X; He X; Pan X; Zang W Cell Physiol Biochem; 2013; 31(2-3):189-98. PubMed ID: 23407103 [TBL] [Abstract][Full Text] [Related]
20. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Jiang WB; Zhao W; Chen H; Wu YY; Wang Y; Fu GS; Yang XJ Clin Exp Pharmacol Physiol; 2018 Mar; 45(3):303-311. PubMed ID: 29047162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]