These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33637228)

  • 1. Paradoxical relationship between distress and functional network topology in phantom sound perception.
    Yoo HB; Mohan A; De Ridder D; Vanneste S
    Prog Brain Res; 2021; 260():367-395. PubMed ID: 33637228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception - identifying the core distress network.
    Mohan A; Davidson C; De Ridder D; Vanneste S
    Brain Imaging Behav; 2020 Feb; 14(1):289-307. PubMed ID: 30443893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of distress on transient network dynamics and topological equilibrium in phantom sound perception.
    Mohan A; Alexandra SJ; Johnson CV; De Ridder D; Vanneste S
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt A):79-92. PubMed ID: 29410199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.
    Xu T; Cullen KR; Mueller B; Schreiner MW; Lim KO; Schulz SC; Parhi KK
    Neuroimage Clin; 2016; 11():302-315. PubMed ID: 26977400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness and dynamicity of functional networks in phantom sound.
    Mohan A; De Ridder D; Vanneste S
    Neuroimage; 2017 Feb; 146():171-187. PubMed ID: 27103139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rich-club reorganization and related network disruptions are associated with the symptoms and severity in classic trigeminal neuralgia patients.
    Zhang P; Wan X; Ai K; Zheng W; Liu G; Wang J; Huang W; Fan F; Yao Z; Zhang J
    Neuroimage Clin; 2022; 36():103160. PubMed ID: 36037660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.
    Chen YC; Xia W; Chen H; Feng Y; Xu JJ; Gu JP; Salvi R; Yin X
    Hum Brain Mapp; 2017 May; 38(5):2384-2397. PubMed ID: 28112466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distress-dependent temporal variability of regions encoding domain-specific and domain-general behavioral manifestations of phantom percepts.
    Mohan A; De Ridder D; Idiculla R; DSouza C; Vanneste S
    Eur J Neurosci; 2018 Jul; 48(2):1743-1764. PubMed ID: 29888410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tinnitus distress: a paradoxical attention to the sound?
    Kandeepan S; Maudoux A; Ribeiro de Paula D; Zheng JY; Cabay JE; Gómez F; Chronik BA; Ridder D; Vanneste S; Soddu A
    J Neurol; 2019 Sep; 266(9):2197-2207. PubMed ID: 31152296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered Topological Patterns of Gray Matter Networks in Tinnitus: A Graph-Theoretical-Based Study.
    Lin X; Chen Y; Wang M; Song C; Lin B; Yuan X; Liu Q; Yang H; Jiang N
    Front Neurosci; 2020; 14():541. PubMed ID: 32536854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain regions responsible for tinnitus distress and loudness: a resting-state FMRI study.
    Ueyama T; Donishi T; Ukai S; Ikeda Y; Hotomi M; Yamanaka N; Shinosaki K; Terada M; Kaneoke Y
    PLoS One; 2013; 8(6):e67778. PubMed ID: 23825684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontostriatal network dysfunction as a domain-general mechanism underlying phantom perception.
    Hullfish J; Abenes I; Yoo HB; De Ridder D; Vanneste S
    Hum Brain Mapp; 2019 May; 40(7):2241-2251. PubMed ID: 30648324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomized EEG functional brain networks in major depressive disorders with greater resilience and lower rich-club coefficient.
    Zhang M; Zhou H; Liu L; Feng L; Yang J; Wang G; Zhong N
    Clin Neurophysiol; 2018 Apr; 129(4):743-758. PubMed ID: 29453169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale structural rich-club organization of the brain in full-term newborns: a combined DWI and fMRI study.
    Fouladivanda M; Kazemi K; Makki M; Khalilian M; Danyali H; Gervain J; Aarabi A
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33930878
    [No Abstract]   [Full Text] [Related]  

  • 16. Mapping cortical hubs in tinnitus.
    Schlee W; Mueller N; Hartmann T; Keil J; Lorenz I; Weisz N
    BMC Biol; 2009 Nov; 7():80. PubMed ID: 19930625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting-state Networks in Tinnitus : A Scoping Review.
    Kok TE; Domingo D; Hassan J; Vuong A; Hordacre B; Clark C; Katrakazas P; Shekhawat GS
    Clin Neuroradiol; 2022 Dec; 32(4):903-922. PubMed ID: 35556148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.
    Schlee W; Weisz N; Bertrand O; Hartmann T; Elbert T
    PLoS One; 2008; 3(11):e3720. PubMed ID: 19005566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging hubs in phantom perception connectomics.
    Mohan A; De Ridder D; Vanneste S
    Neuroimage Clin; 2016; 11():181-194. PubMed ID: 26955514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganized Brain Functional Network Topology in Presbycusis.
    Guan B; Xu Y; Chen YC; Xing C; Xu L; Shang S; Xu JJ; Wu Y; Yan Q
    Front Aging Neurosci; 2022; 14():905487. PubMed ID: 35693344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.