These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33637701)

  • 1. PlasmidHawk improves lab of origin prediction of engineered plasmids using sequence alignment.
    Wang Q; Kille B; Liu TR; Elworth RAL; Treangen TJ
    Nat Commun; 2021 Feb; 12(1):1167. PubMed ID: 33637701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning to predict the lab-of-origin of engineered DNA.
    Nielsen AAK; Voigt CA
    Nat Commun; 2018 Aug; 9(1):3135. PubMed ID: 30087331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving lab-of-origin prediction of genetically engineered plasmids via deep metric learning.
    Soares IM; Camargo FHF; Marques A; Crook OM
    Nat Comput Sci; 2022 Apr; 2(4):253-264. PubMed ID: 38177551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features.
    Zhu Q; Gao S; Xiao B; He Z; Hu S
    Microbiol Spectr; 2023 Jun; 11(3):e0464522. PubMed ID: 37191574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Securing the Exchange of Synthetic Genetic Constructs Using Digital Signatures.
    Gallegos JE; Kar DM; Ray I; Ray I; Peccoud J
    ACS Synth Biol; 2020 Oct; 9(10):2656-2664. PubMed ID: 32916048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of processed data to design an orderly logic gate to construct plasmids in GenoCAD.
    Shi P; Wu T; Li P; Guo B; Fang G; Dong Y
    IET Syst Biol; 2017 Apr; 11(2):65-68. PubMed ID: 28476974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified design space of synthetic stripe-forming networks.
    Schaerli Y; Munteanu A; Gili M; Cotterell J; Sharpe J; Isalan M
    Nat Commun; 2014 Sep; 5():4905. PubMed ID: 25247316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PlasClass improves plasmid sequence classification.
    Pellow D; Mizrahi I; Shamir R
    PLoS Comput Biol; 2020 Apr; 16(4):e1007781. PubMed ID: 32243433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction.
    Suh D; Lee JW; Choi S; Lee Y
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34199677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning approach to programmable RNA switches.
    Angenent-Mari NM; Garruss AS; Soenksen LR; Church G; Collins JJ
    Nat Commun; 2020 Oct; 11(1):5057. PubMed ID: 33028812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Algorithmic Workflows for Standardized Synthetic Biology Constructs.
    Goñi-Moreno A; de Lorenzo V
    Methods Mol Biol; 2018; 1772():363-372. PubMed ID: 29754239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic genomics: potential and limitations.
    Montague MG; Lartigue C; Vashee S
    Curr Opin Biotechnol; 2012 Oct; 23(5):659-65. PubMed ID: 22342755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A standard for near-scarless plasmid construction using reusable DNA parts.
    Ma X; Liang H; Cui X; Liu Y; Lu H; Ning W; Poon NY; Ho B; Zhou K
    Nat Commun; 2019 Jul; 10(1):3294. PubMed ID: 31337759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SENSE: Siamese neural network for sequence embedding and alignment-free comparison.
    Zheng W; Yang L; Genco RJ; Wactawski-Wende J; Buck M; Sun Y
    Bioinformatics; 2019 Jun; 35(11):1820-1828. PubMed ID: 30346493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeePaC: predicting pathogenic potential of novel DNA with reverse-complement neural networks.
    Bartoszewicz JM; Seidel A; Rentzsch R; Renard BY
    Bioinformatics; 2020 Jan; 36(1):81-89. PubMed ID: 31298694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided design of biological circuits using TinkerCell.
    Chandran D; Bergmann FT; Sauro HM
    Bioeng Bugs; 2010; 1(4):274-81. PubMed ID: 21327060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BaPreS: a software tool for predicting bacteriocins using an optimal set of features.
    Akhter S; Miller JH
    BMC Bioinformatics; 2023 Aug; 24(1):313. PubMed ID: 37592230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.