These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33637719)

  • 1. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems.
    Guo S; Li X; Li J; Wei B
    Nat Commun; 2021 Feb; 12(1):1343. PubMed ID: 33637719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insight of Water-Splitting Photocatalyst: H
    Shi W; Guo F; Wang H; Guo S; Li H; Zhou Y; Zhu C; Liu Y; Huang H; Mao B; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20585-20593. PubMed ID: 28569511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.
    Wang Z; Li C; Domen K
    Chem Soc Rev; 2019 Apr; 48(7):2109-2125. PubMed ID: 30328438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts.
    Zhao Y; Ding C; Zhu J; Qin W; Tao X; Fan F; Li R; Li C
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9653-9658. PubMed ID: 32181560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges.
    Wang Q; Hisatomi T; Katayama M; Takata T; Minegishi T; Kudo A; Yamada T; Domen K
    Faraday Discuss; 2017 Apr; 197():491-504. PubMed ID: 28164191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting the photocatalytic hydrogen evolution activity of g-C
    Liu Y; Wu X; Lv H; Cao Y; Ren H
    Dalton Trans; 2019 Jan; 48(4):1217-1225. PubMed ID: 30460956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal Membrane Water Treatment for Two Worlds.
    Jun YS; Wu X; Ghim D; Jiang Q; Cao S; Singamaneni S
    Acc Chem Res; 2019 May; 52(5):1215-1225. PubMed ID: 31062969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Design to Enhance Photocatalytic Hydrogen Evolution via Optimizing Energy and Mass Flows.
    Sun M; Zhou L; Dong T; Huang H; Fang Z; Kou J; Lu C; Xu Z
    ACS Appl Mater Interfaces; 2021 May; 13(18):21207-21216. PubMed ID: 33909395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metal-free reduced graphene oxide-ZnxCd₁-xS nanocomposite with enhanced solar photocatalytic H₂-production performance.
    Zhang J; Yu J; Jaroniec M; Gong JR
    Nano Lett; 2012 Sep; 12(9):4584-9. PubMed ID: 22894686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies.
    Wang Q; Domen K
    Chem Rev; 2020 Jan; 120(2):919-985. PubMed ID: 31393702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma-Wind-Assisted In
    Guo S; Luo H; Duan X; Wei B; Zhang X
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting.
    Takata T; Pan C; Domen K
    Sci Technol Adv Mater; 2015 Jun; 16(3):033506. PubMed ID: 27877787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoS2 Nanosheet-Modified CuInS2 Photocatalyst for Visible-Light-Driven Hydrogen Production from Water.
    Yuan YJ; Chen DQ; Huang YW; Yu ZT; Zhong JS; Chen TT; Tu WG; Guan ZJ; Cao DP; Zou ZG
    ChemSusChem; 2016 May; 9(9):1003-9. PubMed ID: 27062042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production.
    Huang W; Su C; Zhu C; Bo T; Zuo S; Zhou W; Ren Y; Zhang Y; Zhang J; Rueping M; Zhang H
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304634. PubMed ID: 37076750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting.
    Zhou P; Navid IA; Ma Y; Xiao Y; Wang P; Ye Z; Zhou B; Sun K; Mi Z
    Nature; 2023 Jan; 613(7942):66-70. PubMed ID: 36600066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Amine-Functionalized Zirconium Metal-Organic Polyhedron Photocatalyst with High Visible-Light Activity for Hydrogen Production.
    Sun M; Wang QQ; Qin C; Sun CY; Wang XL; Su ZM
    Chemistry; 2019 Feb; 25(11):2824-2830. PubMed ID: 30575148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.