These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33637719)

  • 21. A perspective on two pathways of photocatalytic water splitting and their practical application systems.
    Ma Y; Lin L; Takata T; Hisatomi T; Domen K
    Phys Chem Chem Phys; 2023 Mar; 25(9):6586-6601. PubMed ID: 36789746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic water splitting with a quantum efficiency of almost unity.
    Takata T; Jiang J; Sakata Y; Nakabayashi M; Shibata N; Nandal V; Seki K; Hisatomi T; Domen K
    Nature; 2020 May; 581(7809):411-414. PubMed ID: 32461647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
    Trang TNQ; Phan TB; Nam ND; Thu VTH
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide-nitrogen doped carbon system for efficient photocatalytic water splitting.
    Xin X; Zhang Y; Wang R; Wang Y; Guo P; Li X
    Nat Commun; 2023 Mar; 14(1):1759. PubMed ID: 36997506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway.
    Liu J; Liu Y; Liu N; Han Y; Zhang X; Huang H; Lifshitz Y; Lee ST; Zhong J; Kang Z
    Science; 2015 Feb; 347(6225):970-4. PubMed ID: 25722405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.
    Tian B; Tian B; Smith B; Scott MC; Hua R; Lei Q; Tian Y
    Nat Commun; 2018 Apr; 9(1):1397. PubMed ID: 29643347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.
    Meng X; Wang T; Liu L; Ouyang S; Li P; Hu H; Kako T; Iwai H; Tanaka A; Ye J
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11478-82. PubMed ID: 25044684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smart Assembly of Sulfide Heterojunction Photocatalysts with Well-Defined Interfaces for Direct Z-Scheme Water Splitting under Visible Light.
    Li J; Liu X; Zhang J
    ChemSusChem; 2020 Jun; 13(11):2996-3004. PubMed ID: 32189466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
    Liu KK; Jiang Q; Tadepalli S; Raliya R; Biswas P; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7675-7681. PubMed ID: 28151641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perfect Photon-to-Hydrogen Conversion Efficiency.
    Kalisman P; Nakibli Y; Amirav L
    Nano Lett; 2016 Mar; 16(3):1776-81. PubMed ID: 26788824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting.
    Cui J; Li C; Zhang F
    ChemSusChem; 2019 May; 12(9):1872-1888. PubMed ID: 30211984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photocatalytic solar hydrogen production from water on a 100-m
    Nishiyama H; Yamada T; Nakabayashi M; Maehara Y; Yamaguchi M; Kuromiya Y; Nagatsuma Y; Tokudome H; Akiyama S; Watanabe T; Narushima R; Okunaka S; Shibata N; Takata T; Hisatomi T; Domen K
    Nature; 2021 Oct; 598(7880):304-307. PubMed ID: 34433207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress in Energy-Driven Water Splitting.
    Tee SY; Win KY; Teo WS; Koh LD; Liu S; Teng CP; Han MY
    Adv Sci (Weinh); 2017 May; 4(5):1600337. PubMed ID: 28546906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient visible light driven photocatalytic hydrogen production from water using attapulgite clay sensitized by CdS nanoparticles.
    Zhang J; He R; Liu X
    Nanotechnology; 2013 Dec; 24(50):505401. PubMed ID: 24284430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation.
    Yuan Q; Liu D; Zhang N; Ye W; Ju H; Shi L; Long R; Zhu J; Xiong Y
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4206-4210. PubMed ID: 28296159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance.
    Yu J; Yang B; Cheng B
    Nanoscale; 2012 Apr; 4(8):2670-7. PubMed ID: 22422167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic Hydrogen Evolution from Water Splitting Using Core-Shell Structured Cu/ZnS/COF Composites.
    Wang W; Li B; Yang HJ; Liu Y; Gurusamy L; Karuppasamy L; Wu JJ
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of hydrogen production by photocatalytic water splitting using liquid phase plasma over Ag-doped TiO
    Park YK; Kim BJ; Jeong S; Jeon KJ; Chung KH; Jung SC
    Environ Res; 2020 Sep; 188():109630. PubMed ID: 32521308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production.
    Dong K; Le TA; Nakibli Y; Schleusener A; Wächtler M; Amirav L
    ChemSusChem; 2022 Sep; 15(17):e202200804. PubMed ID: 35789067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.