These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 33637846)
41. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function. Tegoni M; Gervais M; Desbois A Biochemistry; 1997 Jul; 36(29):8932-46. PubMed ID: 9220981 [TBL] [Abstract][Full Text] [Related]
42. Temporal expression patterns of timeless in vg and cry(b) mutants of Drosophila melanogaster. Suthakar G; Subramanian P; Manivasagam T Indian J Biochem Biophys; 2005 Apr; 42(2):87-91. PubMed ID: 23923567 [TBL] [Abstract][Full Text] [Related]
43. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Beel B; Prager K; Spexard M; Sasso S; Weiss D; Müller N; Heinnickel M; Dewez D; Ikoma D; Grossman AR; Kottke T; Mittag M Plant Cell; 2012 Jul; 24(7):2992-3008. PubMed ID: 22773746 [TBL] [Abstract][Full Text] [Related]
44. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock. Peschel N; Veleri S; Stanewsky R Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124 [TBL] [Abstract][Full Text] [Related]
45. C-Terminal Extension of a Plant Cryptochrome Dissociates from the β-Sheet of the Flavin-Binding Domain. Goett-Zink L; Toschke AL; Petersen J; Mittag M; Kottke T J Phys Chem Lett; 2021 Jun; 12(23):5558-5563. PubMed ID: 34101477 [TBL] [Abstract][Full Text] [Related]
47. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. Engelhard C; Wang X; Robles D; Moldt J; Essen LO; Batschauer A; Bittl R; Ahmad M Plant Cell; 2014 Nov; 26(11):4519-31. PubMed ID: 25428980 [TBL] [Abstract][Full Text] [Related]
48. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Hemsley MJ; Mazzotta GM; Mason M; Dissel S; Toppo S; Pagano MA; Sandrelli F; Meggio F; Rosato E; Costa R; Tosatto SC Biochem Biophys Res Commun; 2007 Apr; 355(2):531-7. PubMed ID: 17306225 [TBL] [Abstract][Full Text] [Related]
49. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1. El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597 [TBL] [Abstract][Full Text] [Related]
50. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster. Kutta RJ; Archipowa N; Scrutton NS Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904 [TBL] [Abstract][Full Text] [Related]
51. Adaptation of Deppisch P; Prutscher JM; Pegoraro M; Tauber E; Wegener C; Helfrich-Förster C J Biol Rhythms; 2022 Apr; 37(2):185-201. PubMed ID: 35301885 [TBL] [Abstract][Full Text] [Related]
52. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Oldemeyer S; Franz S; Wenzel S; Essen LO; Mittag M; Kottke T J Biol Chem; 2016 Jul; 291(27):14062-14071. PubMed ID: 27189948 [TBL] [Abstract][Full Text] [Related]
53. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. Egan ES; Franklin TM; Hilderbrand-Chae MJ; McNeil GP; Roberts MA; Schroeder AJ; Zhang X; Jackson FR J Neurosci; 1999 May; 19(10):3665-73. PubMed ID: 10233998 [TBL] [Abstract][Full Text] [Related]
54. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster. Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610 [TBL] [Abstract][Full Text] [Related]
55. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. Müller P; Ahmad M J Biol Chem; 2011 Jun; 286(24):21033-40. PubMed ID: 21467031 [TBL] [Abstract][Full Text] [Related]
56. Dopamine acts through Cryptochrome to promote acute arousal in Drosophila. Kumar S; Chen D; Sehgal A Genes Dev; 2012 Jun; 26(11):1224-34. PubMed ID: 22581798 [TBL] [Abstract][Full Text] [Related]
57. Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle. Arthaut LD; Jourdan N; Mteyrek A; Procopio M; El-Esawi M; d'Harlingue A; Bouchet PE; Witczak J; Ritz T; Klarsfeld A; Birman S; Usselman RJ; Hoecker U; Martino CF; Ahmad M PLoS One; 2017; 12(3):e0171836. PubMed ID: 28296892 [TBL] [Abstract][Full Text] [Related]
58. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. Bouly JP; Schleicher E; Dionisio-Sese M; Vandenbussche F; Van Der Straeten D; Bakrim N; Meier S; Batschauer A; Galland P; Bittl R; Ahmad M J Biol Chem; 2007 Mar; 282(13):9383-9391. PubMed ID: 17237227 [TBL] [Abstract][Full Text] [Related]