BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33638224)

  • 1. Vascular origins of low-frequency oscillations in the cerebrospinal fluid signal in resting-state fMRI: Interpretation using photoplethysmography.
    Attarpour A; Ward J; Chen JJ
    Hum Brain Mapp; 2021 Jun; 42(8):2606-2622. PubMed ID: 33638224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults.
    Hussein A; Matthews JL; Syme C; Macgowan C; MacIntosh BJ; Shirzadi Z; Pausova Z; Paus T; Chen JJ
    Hum Brain Mapp; 2020 Jun; 41(8):2121-2135. PubMed ID: 32034832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2021 Nov; 242():118467. PubMed ID: 34390877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An fMRI study.
    Yang HS; Inglis B; Talavage TM; Nair VV; Yao JF; Fitzgerald B; Schwichtenberg AJ; Tong Y
    J Cereb Blood Flow Metab; 2022 Jun; 42(6):1091-1103. PubMed ID: 35037498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics.
    Sobczak F; He Y; Sejnowski TJ; Yu X
    Cereb Cortex; 2021 Jan; 31(2):826-844. PubMed ID: 32940658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
    Golestani AM; Wei LL; Chen JJ
    Neuroimage; 2016 Sep; 138():147-163. PubMed ID: 27177763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI-related anxiety can induce slow BOLD oscillations coupled with cardiac oscillations.
    Pfurtscheller G; Schwerdtfeger AR; Rassler B; Andrade A; Schwarz G
    Clin Neurophysiol; 2021 Sep; 132(9):2083-2090. PubMed ID: 34284243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial oscillations of cerebrospinal fluid and blood flows: analysis with magnetic resonance imaging.
    Strik C; Klose U; Erb M; Strik H; Grodd W
    J Magn Reson Imaging; 2002 Mar; 15(3):251-8. PubMed ID: 11891969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct, intraoperative observation of ~0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI.
    Rayshubskiy A; Wojtasiewicz TJ; Mikell CB; Bouchard MB; Timerman D; Youngerman BE; McGovern RA; Otten ML; Canoll P; McKhann GM; Hillman EM
    Neuroimage; 2014 Feb; 87():323-31. PubMed ID: 24185013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular coupling in resting-state fMRI: evidence from multiple modalities.
    Zhu DC; Tarumi T; Khan MA; Zhang R
    J Cereb Blood Flow Metab; 2015 Dec; 35(12):1910-20. PubMed ID: 26174326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in resting state fMRI acquisitions for functional connectomics.
    Raimondo L; Oliveira ĹAF; Heij J; Priovoulos N; Kundu P; Leoni RF; van der Zwaag W
    Neuroimage; 2021 Nov; 243():118503. PubMed ID: 34479041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting-state fMRI confounds and cleanup.
    Murphy K; Birn RM; Bandettini PA
    Neuroimage; 2013 Oct; 80():349-59. PubMed ID: 23571418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization of intrinsic 0.1-Hz blood-oxygen-level-dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety.
    Pfurtscheller G; Schwerdtfeger A; Seither-Preisler A; Brunner C; Aigner CS; Calisto J; Gens J; Andrade A
    Eur J Neurosci; 2018 Mar; 47(5):417-426. PubMed ID: 29368814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular effects of caffeine found in BOLD fMRI.
    Yang HS; Liang Z; Yao JF; Shen X; Frederick BD; Tong Y
    J Neurosci Res; 2019 Apr; 97(4):456-466. PubMed ID: 30488978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation.
    Bartoň M; Mareček R; Krajčovičová L; Slavíček T; Kašpárek T; Zemánková P; Říha P; Mikl M
    Hum Brain Mapp; 2019 Mar; 40(4):1114-1138. PubMed ID: 30403309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature.
    Tong Y; Frederick Bd
    Neuroimage; 2012 Jul; 61(4):1419-27. PubMed ID: 22440649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Multislice Resting-State Functional Magnetic Resonance Imaging at 3 Tesla: Slice-Acceleration-Related Biases in Physiological Effects.
    Golestani AM; Faraji-Dana Z; Kayvanrad M; Setsompop K; Graham SJ; Chen JJ
    Brain Connect; 2018 Mar; 8(2):82-93. PubMed ID: 29226689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing systemic physiological effects on the blood oxygen level dependent signal of resting-state fMRI in time-frequency space using wavelets.
    Lee QN; Chen JE; Wheeler GJ; Fan AP
    Hum Brain Mapp; 2023 Dec; 44(18):6537-6551. PubMed ID: 37950750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.