These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33638635)

  • 41. Identify Bitter Peptides by Using Deep Representation Learning Features.
    Jiang J; Lin X; Jiang Y; Jiang L; Lv Z
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887225
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports.
    Bressem KK; Adams LC; Gaudin RA; Tröltzsch D; Hamm B; Makowski MR; Schüle CY; Vahldiek JL; Niehues SM
    Bioinformatics; 2021 Jan; 36(21):5255-5261. PubMed ID: 32702106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.
    Wei L; Zhou C; Chen H; Song J; Su R
    Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multimodal Abstractive Summarization using bidirectional encoder representations from transformers with attention mechanism.
    Argade D; Khairnar V; Vora D; Patil S; Kotecha K; Alfarhood S
    Heliyon; 2024 Feb; 10(4):e26162. PubMed ID: 38420442
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep2Pep: A deep learning method in multi-label classification of bioactive peptide.
    Chen L; Hu Z; Rong Y; Lou B
    Comput Biol Chem; 2024 Apr; 109():108021. PubMed ID: 38308955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences.
    Chen W; Chen G; Zhao L; Chen CY
    J Phys Chem A; 2021 Jul; 125(25):5633-5642. PubMed ID: 34142824
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MLACP: machine-learning-based prediction of anticancer peptides.
    Manavalan B; Basith S; Shin TH; Choi S; Kim MO; Lee G
    Oncotarget; 2017 Sep; 8(44):77121-77136. PubMed ID: 29100375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PredAPP: Predicting Anti-Parasitic Peptides with Undersampling and Ensemble Approaches.
    Zhang W; Xia E; Dai R; Tang W; Bin Y; Xia J
    Interdiscip Sci; 2022 Mar; 14(1):258-268. PubMed ID: 34608613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BERT-m7G: A Transformer Architecture Based on BERT and Stacking Ensemble to Identify RNA N7-Methylguanosine Sites from Sequence Information.
    Zhang L; Qin X; Liu M; Liu G; Ren Y
    Comput Math Methods Med; 2021; 2021():7764764. PubMed ID: 34484416
    [TBL] [Abstract][Full Text] [Related]  

  • 51. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Manavalan B; Shoombuatong W
    Methods; 2022 Aug; 204():189-198. PubMed ID: 34883239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Model-based clinical note entity recognition for rheumatoid arthritis using bidirectional encoder representation from transformers.
    Li M; Liu F; Zhu J; Zhang R; Qin Y; Gao D
    Quant Imaging Med Surg; 2022 Jan; 12(1):184-195. PubMed ID: 34993070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SCMRSA: a New Approach for Identifying and Analyzing Anti-MRSA Peptides Using Estimated Propensity Scores of Dipeptides.
    Charoenkwan P; Kanthawong S; Schaduangrat N; Li' P; Moni MA; Shoombuatong W
    ACS Omega; 2022 Sep; 7(36):32653-32664. PubMed ID: 36120041
    [No Abstract]   [Full Text] [Related]  

  • 57. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation.
    Charoenkwan P; Nantasenamat C; Hasan MM; Shoombuatong W
    Anal Biochem; 2020 Jun; 599():113747. PubMed ID: 32333902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using BERT to identify drug-target interactions from whole PubMed.
    Aldahdooh J; Vähä-Koskela M; Tang J; Tanoli Z
    BMC Bioinformatics; 2022 Jun; 23(1):245. PubMed ID: 35729494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relation Classification for Bleeding Events From Electronic Health Records Using Deep Learning Systems: An Empirical Study.
    Mitra A; Rawat BPS; McManus DD; Yu H
    JMIR Med Inform; 2021 Jul; 9(7):e27527. PubMed ID: 34255697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fine-Tuning BERT Models to Classify Misinformation on Garlic and COVID-19 on Twitter.
    Kim MG; Kim M; Kim JH; Kim K
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.