BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33638785)

  • 1. Machine learning-based models to predict aquatic ecological risk for engineered nanoparticles: using hazard concentration for 5% of species as an endpoint.
    Qi Q; Wang Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25114-25128. PubMed ID: 38467999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic Ecotoxicity Testing of Nanoparticles-The Quest To Disclose Nanoparticle Effects.
    Skjolding LM; Sørensen SN; Hartmann NB; Hjorth R; Hansen SF; Baun A
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15224-15239. PubMed ID: 27564250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid evolution of silver nanoparticle resistance in Escherichia coli.
    Graves JL; Tajkarimi M; Cunningham Q; Campbell A; Nonga H; Harrison SH; Barrick JE
    Front Genet; 2015; 6():42. PubMed ID: 25741363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancement of metal oxide nanomaterials on agri-food fronts.
    Dubourg G; Pavlović Z; Bajac B; Kukkar M; Finčur N; Novaković Z; Radović M
    Sci Total Environ; 2024 Jun; 928():172048. PubMed ID: 38580125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential risks of nanomaterials: a review carried out for ECETOC.
    Borm PJ; Robbins D; Haubold S; Kuhlbusch T; Fissan H; Donaldson K; Schins R; Stone V; Kreyling W; Lademann J; Krutmann J; Warheit D; Oberdorster E
    Part Fibre Toxicol; 2006 Aug; 3():11. PubMed ID: 16907977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-Based Strategies to Treat Neuro-Inflammation.
    Poupot R; Bergozza D; Fruchon S
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29425146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks.
    García-Torra V; Cano A; Espina M; Ettcheto M; Camins A; Barroso E; Vazquez-Carrera M; García ML; Sánchez-López E; Souto EB
    Toxics; 2021 Aug; 9(8):. PubMed ID: 34437513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Exposure of Organisms to the Action of Nanomaterials.
    Staroń A; Długosz O; Pulit-Prociak J; Banach M
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nanoparticles on the Environment and Outdoor Workplaces.
    Taghavi SM; Momenpour M; Azarian M; Ahmadian M; Souri F; Taghavi SA; Sadeghain M; Karchani M
    Electron Physician; 2013; 5(4):706-12. PubMed ID: 26120406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review.
    Bimová P; Barbieriková Z; Grenčíková A; Šípoš R; Škulcová AB; Krivjanská A; Mackuľak T
    Environ Sci Pollut Res Int; 2021 May; 28(18):22203-22220. PubMed ID: 33733403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic nanostructures and nanotoxicity.
    Sarma A; Bania R; Devi JR; Deka S
    J Appl Toxicol; 2021 Oct; 41(10):1494-1517. PubMed ID: 33641187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au-Based Nanoparticles Enhance Low Temperature Tolerance in Wheat by Regulating Some Physiological Parameters and Gene Expression.
    Venzhik Y; Deryabin A; Zhukova K
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of Metal Oxide Nanoparticles: Looking through the Lens of Toxicogenomics.
    Boyadzhiev A; Wu D; Avramescu ML; Williams A; Rasmussen P; Halappanavar S
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials.
    Li X; He F; Wang Z; Xing B
    Eco Environ Health; 2022 Sep; 1(3):181-197. PubMed ID: 38075596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma.
    Deng R; Zhu Y; Wu X; Wang M
    Int J Nanomedicine; 2023; 18():3489-3508. PubMed ID: 37404851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanoremediation and phyconanotechnology: cyanobacteria for metal biosorption toward a circular economy.
    Ciani M; Adessi A
    Front Microbiol; 2023; 14():1166612. PubMed ID: 37323915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, biomedical applications, and toxicity of CuO nanoparticles.
    Naz S; Gul A; Zia M; Javed R
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1039-1061. PubMed ID: 36635395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies.
    Solano R; Patiño-Ruiz D; Tejeda-Benitez L; Herrera A
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):16962-16981. PubMed ID: 33638785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.