These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33639058)

  • 1. Pathogenesis of Diabetic Cardiomyopathy and Role of miRNA.
    Ahmed U; Khaliq S; Ahmad HU; Ahmad I; Ashfaq UA; Qasim M; Masoud MS
    Crit Rev Eukaryot Gene Expr; 2021; 31(1):79-92. PubMed ID: 33639058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics.
    Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M
    Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid.
    Li CJ; Lv L; Li H; Yu DM
    Cardiovasc Diabetol; 2012 Jun; 11():73. PubMed ID: 22713251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy.
    Xu D; Zhang X; Chen X; Yang S; Chen H
    Life Sci; 2020 Sep; 256():117980. PubMed ID: 32561396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1.
    Yildirim SS; Akman D; Catalucci D; Turan B
    Cell Biochem Biophys; 2013; 67(3):1397-408. PubMed ID: 23723006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA.
    Yang X; Li X; Lin Q; Xu Q
    Gene; 2019 Oct; 715():143995. PubMed ID: 31336140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy.
    Kandula V; Kosuru R; Li H; Yan D; Zhu Q; Lian Q; Ge RS; Xia Z; Irwin MG
    Cardiovasc Diabetol; 2016 Mar; 15():44. PubMed ID: 26956801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
    Xu Z; Sun J; Tong Q; Lin Q; Qian L; Park Y; Zheng Y
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value of circulating miRNA-21 in the diagnosis of subclinical diabetic cardiomyopathy.
    Tao L; Huang X; Xu M; Qin Z; Zhang F; Hua F; Jiang X; Wang Y
    Mol Cell Endocrinol; 2020 Dec; 518():110944. PubMed ID: 32717421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulation of circulating miRNAs promotes the pathogenesis of diabetes-induced cardiomyopathy.
    Ahmed U; Ashfaq UA; Qasim M; Ahmad I; Ahmad HU; Tariq M; Masoud MS; Khaliq S
    PLoS One; 2021; 16(4):e0250773. PubMed ID: 33909697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial Dysfunction and Diabetic Cardiomyopathy.
    Wang M; Li Y; Li S; Lv J
    Front Endocrinol (Lausanne); 2022; 13():851941. PubMed ID: 35464057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of mitochondrial dysfunction in diabetic cardiomyopathy and intervention of traditional Chinese medicine].
    Tian J; Lv R; Guo W
    Zhongguo Zhong Yao Za Zhi; 2018 Jan; 43(1):8-14. PubMed ID: 29552805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy.
    Evangelista I; Nuti R; Picchioni T; Dotta F; Palazzuoli A
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31269778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy.
    Tang Z; Wang P; Dong C; Zhang J; Wang X; Pei H
    Oxid Med Cell Longev; 2022; 2022():5913374. PubMed ID: 35103095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial dynamics in diabetic cardiomyopathy.
    Galloway CA; Yoon Y
    Antioxid Redox Signal; 2015 Jun; 22(17):1545-62. PubMed ID: 25738230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
    Wang L; Cai Y; Jian L; Cheung CW; Zhang L; Xia Z
    Cardiovasc Diabetol; 2021 Jan; 20(1):2. PubMed ID: 33397369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic cardiomyopathy--fact or fiction?
    Maisch B; Alter P; Pankuweit S
    Herz; 2011 Mar; 36(2):102-15. PubMed ID: 21424347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα.
    Yin Z; Zhao Y; He M; Li H; Fan J; Nie X; Yan M; Chen C; Wang DW
    Cardiovasc Diabetol; 2019 Jan; 18(1):7. PubMed ID: 30635067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy.
    Mathur P; Rani V
    Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LncRNA KCNQ1OT1 Mediates Pyroptosis in Diabetic Cardiomyopathy.
    Yang F; Qin Y; Wang Y; Li A; Lv J; Sun X; Che H; Han T; Meng S; Bai Y; Wang L
    Cell Physiol Biochem; 2018; 50(4):1230-1244. PubMed ID: 30355944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.