BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33639162)

  • 1. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia.
    Yang Y; Kang X; Hu S; Chen B; Xie Y; Song B; Zhang Q; Wu H; Ou Z; Xian Y; Fan Y; Li X; Lai L; Sun X
    J Biol Chem; 2021; 296():100464. PubMed ID: 33639162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs.
    Xu P; Tong Y; Liu XZ; Wang TT; Cheng L; Wang BY; Lv X; Huang Y; Liu DP
    Sci Rep; 2015 Jul; 5():12065. PubMed ID: 26156589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of an in vitro model of β-thalassemia using the CRISPR/Cas9 genome editing system.
    Ajami M; Atashi A; Kaviani S; Kiani J; Soleimani M
    J Cell Biochem; 2020 Feb; 121(2):1420-1430. PubMed ID: 31596028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation.
    Gabr H; El Ghamrawy MK; Almaeen AH; Abdelhafiz AS; Hassan AOS; El Sissy MH
    Stem Cell Res Ther; 2020 Sep; 11(1):390. PubMed ID: 32912325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of Hemoglobin E/Beta-Thalassemia Patient-Derived iPSCs Using CRISPR/Cas9.
    Wattanapanitch M
    Methods Mol Biol; 2021; 2211():193-211. PubMed ID: 33336279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.
    Song B; Fan Y; He W; Zhu D; Niu X; Wang D; Ou Z; Luo M; Sun X
    Stem Cells Dev; 2015 May; 24(9):1053-65. PubMed ID: 25517294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology.
    Li L; Yi H; Liu Z; Long P; Pan T; Huang Y; Li Y; Li Q; Ma Y
    Stem Cell Res Ther; 2022 Mar; 13(1):102. PubMed ID: 35255977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells.
    Pavani G; Fabiano A; Laurent M; Amor F; Cantelli E; Chalumeau A; Maule G; Tachtsidi A; Concordet JP; Cereseto A; Mavilio F; Ferrari G; Miccio A; Amendola M
    Blood Adv; 2021 Mar; 5(5):1137-1153. PubMed ID: 33635334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia.
    Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P
    Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.
    Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S
    Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides.
    Xiong Z; Xie Y; Yang Y; Xue Y; Wang D; Lin S; Chen D; Lu D; He L; Song B; Yang Y; Sun X
    J Cell Mol Med; 2019 Dec; 23(12):8046-8057. PubMed ID: 31631510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
    Dever DP; Bak RO; Reinisch A; Camarena J; Washington G; Nicolas CE; Pavel-Dinu M; Saxena N; Wilkens AB; Mantri S; Uchida N; Hendel A; Narla A; Majeti R; Weinberg KI; Porteus MH
    Nature; 2016 Nov; 539(7629):384-389. PubMed ID: 27820943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing.
    Li C; Psatha N; Sova P; Gil S; Wang H; Kim J; Kulkarni C; Valensisi C; Hawkins RD; Stamatoyannopoulos G; Lieber A
    Blood; 2018 Jun; 131(26):2915-2928. PubMed ID: 29789357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Therapy and Genome Editing.
    Boulad F; Mansilla-Soto J; Cabriolu A; Rivière I; Sadelain M
    Hematol Oncol Clin North Am; 2018 Apr; 32(2):329-342. PubMed ID: 29458735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus.
    Antoniani C; Meneghini V; Lattanzi A; Felix T; Romano O; Magrin E; Weber L; Pavani G; El Hoss S; Kurita R; Nakamura Y; Cradick TJ; Lundberg AS; Porteus M; Amendola M; El Nemer W; Cavazzana M; Mavilio F; Miccio A
    Blood; 2018 Apr; 131(17):1960-1973. PubMed ID: 29519807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
    Ravi NS; Wienert B; Wyman SK; Bell HW; George A; Mahalingam G; Vu JT; Prasad K; Bandlamudi BP; Devaraju N; Rajendiran V; Syedbasha N; Pai AA; Nakamura Y; Kurita R; Narayanasamy M; Balasubramanian P; Thangavel S; Marepally S; Velayudhan SR; Srivastava A; DeWitt MA; Crossley M; Corn JE; Mohankumar KM
    Elife; 2022 Feb; 11():. PubMed ID: 35147495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells.
    Cromer MK; Camarena J; Martin RM; Lesch BJ; Vakulskas CA; Bode NM; Kurgan G; Collingwood MA; Rettig GR; Behlke MA; Lemgart VT; Zhang Y; Goyal A; Zhao F; Ponce E; Srifa W; Bak RO; Uchida N; Majeti R; Sheehan VA; Tisdale JF; Dever DP; Porteus MH
    Nat Med; 2021 Apr; 27(4):677-687. PubMed ID: 33737751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia.
    Xu S; Luk K; Yao Q; Shen AH; Zeng J; Wu Y; Luo HY; Brendel C; Pinello L; Chui DHK; Wolfe SA; Bauer DE
    Blood; 2019 May; 133(21):2255-2262. PubMed ID: 30704988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.