These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33639224)

  • 1. Neural Signatures of Interface Errors in Remote Agent Manipulation.
    Yazmir B; Reiner M
    Neuroscience; 2022 Mar; 486():62-76. PubMed ID: 33639224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.
    Yazmir B; Reiner M
    Neuroscience; 2018 May; 378():100-112. PubMed ID: 27816702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. I act, therefore I err: EEG correlates of success and failure in a virtual throwing game.
    Yazmir B; Reiner M
    Int J Psychophysiol; 2017 Dec; 122():32-41. PubMed ID: 28193497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Violating body movement semantics: Neural signatures of self-generated and external-generated errors.
    Padrao G; Gonzalez-Franco M; Sanchez-Vives MV; Slater M; Rodriguez-Fornells A
    Neuroimage; 2016 Jan; 124(Pt A):147-156. PubMed ID: 26282856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interface: changes in performance using virtual reality techniques.
    Ron-Angevin R; Díaz-Estrella A
    Neurosci Lett; 2009 Jan; 449(2):123-7. PubMed ID: 19000739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Strathclyde brain computer interface.
    Valsan G; Grychtol B; Lakany H; Conway BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():606-9. PubMed ID: 19963973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural sources of prediction errors detect unrealistic VR interactions.
    Gehrke L; Lopes P; Klug M; Akman S; Gramann K
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35462356
    [No Abstract]   [Full Text] [Related]  

  • 12. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.
    Omedes J; Schwarz A; Müller-Putz GR; Montesano L
    J Neural Eng; 2018 Aug; 15(4):046023. PubMed ID: 29714718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the use of tactile feedback in an ERP-based auditory BCI.
    Schreuder M; Thurlings ME; Brouwer AM; Van Erp JB; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6707-10. PubMed ID: 23367468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control-display mapping in brain-computer interfaces.
    Thurlings ME; van Erp JB; Brouwer AM; Blankertz B; Werkhoven P
    Ergonomics; 2012; 55(5):564-80. PubMed ID: 22506977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalographic (EEG) control of three-dimensional movement.
    McFarland DJ; Sarnacki WA; Wolpaw JR
    J Neural Eng; 2010 Jun; 7(3):036007. PubMed ID: 20460690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000.
    Wilson JA; Schalk G; Walton LM; Williams JC
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19641479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.