These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33639352)
1. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Brion E; Léger J; Barragán-Montero AM; Meert N; Lee JA; Macq B Comput Biol Med; 2021 Apr; 131():104269. PubMed ID: 33639352 [TBL] [Abstract][Full Text] [Related]
2. Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy. Fu Y; Lei Y; Wang T; Tian S; Patel P; Jani AB; Curran WJ; Liu T; Yang X Med Phys; 2020 Aug; 47(8):3415-3422. PubMed ID: 32323330 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography. Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762 [TBL] [Abstract][Full Text] [Related]
4. Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer. Han X; Hong J; Reyngold M; Crane C; Cuaron J; Hajj C; Mann J; Zinovoy M; Greer H; Yorke E; Mageras G; Niethammer M Med Phys; 2021 Jun; 48(6):3084-3095. PubMed ID: 33905539 [TBL] [Abstract][Full Text] [Related]
5. Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI. Lei Y; Wang T; Tian S; Dong X; Jani AB; Schuster D; Curran WJ; Patel P; Liu T; Yang X Phys Med Biol; 2020 Feb; 65(3):035013. PubMed ID: 31851956 [TBL] [Abstract][Full Text] [Related]
6. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124 [No Abstract] [Full Text] [Related]
7. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy. Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584 [TBL] [Abstract][Full Text] [Related]
8. Unsupervised learning for deformable registration of thoracic CT and cone-beam CT based on multiscale features matching with spatially adaptive weighting. Duan L; Ni X; Liu Q; Gong L; Yuan G; Li M; Yang X; Fu T; Zheng J Med Phys; 2020 Nov; 47(11):5632-5647. PubMed ID: 32949051 [TBL] [Abstract][Full Text] [Related]
9. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model. Chai X; van Herk M; Betgen A; Hulshof M; Bel A Phys Med Biol; 2012 Jun; 57(12):3945-62. PubMed ID: 22643320 [TBL] [Abstract][Full Text] [Related]
10. Organ-aware CBCT enhancement via dual path learning for prostate cancer treatment. Chen X; Pang Y; Ahmad S; Royce T; Wang A; Lian J; Yap PT Med Phys; 2023 Nov; 50(11):6931-6942. PubMed ID: 37751497 [TBL] [Abstract][Full Text] [Related]
11. Clinical evaluation of a full-image deep segmentation algorithm for the male pelvis on cone-beam CT and CT. Schreier J; Genghi A; Laaksonen H; Morgas T; Haas B Radiother Oncol; 2020 Apr; 145():1-6. PubMed ID: 31869676 [TBL] [Abstract][Full Text] [Related]
12. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465 [TBL] [Abstract][Full Text] [Related]
13. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
14. Training a deep neural network coping with diversities in abdominal and pelvic images of children and young adults for CBCT-based adaptive proton therapy. Uh J; Wang C; Acharya S; Krasin MJ; Hua CH Radiother Oncol; 2021 Jul; 160():250-258. PubMed ID: 33992626 [TBL] [Abstract][Full Text] [Related]
15. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Thor M; Petersen JB; Bentzen L; Høyer M; Muren LP Acta Oncol; 2011 Aug; 50(6):918-25. PubMed ID: 21767192 [TBL] [Abstract][Full Text] [Related]
16. Validation of a deformable image registration technique for cone beam CT-based dose verification. Moteabbed M; Sharp GC; Wang Y; Trofimov A; Efstathiou JA; Lu HM Med Phys; 2015 Jan; 42(1):196-205. PubMed ID: 25563260 [TBL] [Abstract][Full Text] [Related]
17. Deep cross-modality (MR-CT) educed distillation learning for cone beam CT lung tumor segmentation. Jiang J; Riyahi Alam S; Chen I; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2021 Jul; 48(7):3702-3713. PubMed ID: 33905558 [TBL] [Abstract][Full Text] [Related]
18. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620 [TBL] [Abstract][Full Text] [Related]
19. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT. Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482 [TBL] [Abstract][Full Text] [Related]
20. Multitask 3D CBCT-to-CT translation and organs-at-risk segmentation using physics-based data augmentation. Dahiya N; Alam SR; Zhang P; Zhang SY; Li T; Yezzi A; Nadeem S Med Phys; 2021 Sep; 48(9):5130-5141. PubMed ID: 34245012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]