These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 33639513)
1. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Ilhan-Ayisigi E; Yaldiz B; Bor G; Yaghmur A; Yesil-Celiktas O Colloids Surf B Biointerfaces; 2021 May; 201():111633. PubMed ID: 33639513 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Yaghmur A; Hamad I Molecules; 2022 Jul; 27(14):. PubMed ID: 35889473 [TBL] [Abstract][Full Text] [Related]
3. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Silva BFB Phys Chem Chem Phys; 2017 Sep; 19(35):23690-23703. PubMed ID: 28828415 [TBL] [Abstract][Full Text] [Related]
4. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Yaghmur A; Ghazal A; Ghazal R; Dimaki M; Svendsen WE Phys Chem Chem Phys; 2019 Jun; 21(24):13005-13013. PubMed ID: 31165825 [TBL] [Abstract][Full Text] [Related]
5. Continuous Microfluidic Production of Citrem-Phosphatidylcholine Nano-Self-Assemblies for Thymoquinone Delivery. Ilhan-Ayisigi E; Ghazal A; Sartori B; Dimaki M; Svendsen WE; Yesil-Celiktas O; Yaghmur A Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34200457 [TBL] [Abstract][Full Text] [Related]
6. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Khaliqi K; Ghazal A; Azmi IDM; Amenitsch H; Mortensen K; Salentinig S; Yaghmur A Analyst; 2017 Aug; 142(17):3118-3126. PubMed ID: 28744529 [TBL] [Abstract][Full Text] [Related]
7. Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering. Hong L; Sesen M; Hawley A; Neild A; Spicer PT; Boyd BJ Soft Matter; 2019 Nov; 15(46):9565-9578. PubMed ID: 31724682 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. Ghazal A; Gontsarik M; Kutter JP; Lafleur JP; Ahmadvand D; Labrador A; Salentinig S; Yaghmur A J Phys Chem Lett; 2017 Jan; 8(1):73-79. PubMed ID: 27936765 [TBL] [Abstract][Full Text] [Related]
9. An innovative data processing method for studying nanoparticle formation in droplet microfluidics using X-rays scattering. Radajewski D; Hunter L; He X; Nahi O; Galloway JM; Meldrum FC Lab Chip; 2021 Nov; 21(22):4498-4506. PubMed ID: 34671784 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. Tetyczka C; Hodzic A; Kriechbaum M; Juraić K; Spirk C; Hartl S; Pritz E; Leitinger G; Roblegg E Eur J Pharm Biopharm; 2019 Jun; 139():153-160. PubMed ID: 30905779 [TBL] [Abstract][Full Text] [Related]
11. Small-angle X-ray scattering in droplet-based microfluidics. Stehle R; Goerigk G; Wallacher D; Ballauff M; Seiffert S Lab Chip; 2013 Apr; 13(8):1529-37. PubMed ID: 23429654 [TBL] [Abstract][Full Text] [Related]
12. Characterizing an siRNA-Containing Lipid-Nanoparticle Prepared by a Microfluidic Reactor: Small-Angle X-ray Scattering and Cryotransmission Electron Microscopic Studies. Aburai K; Hatanaka K; Takano S; Fujii S; Sakurai K Langmuir; 2020 Oct; 36(42):12545-12554. PubMed ID: 32988200 [TBL] [Abstract][Full Text] [Related]
13. OSTE+ for in situ SAXS analysis with droplet microfluidic devices. Lange T; Charton S; Bizien T; Testard F; Malloggi F Lab Chip; 2020 Aug; 20(16):2990-3000. PubMed ID: 32696785 [TBL] [Abstract][Full Text] [Related]
14. X-ray compatible microfluidics for Brenker J; Henzler K; Borca CN; Huthwelker T; Alan T Lab Chip; 2022 Mar; 22(6):1214-1230. PubMed ID: 35170605 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. Mehraji S; DeVoe DL Lab Chip; 2024 Feb; 24(5):1154-1174. PubMed ID: 38165786 [TBL] [Abstract][Full Text] [Related]
16. Microfluidics: a transformational tool for nanomedicine development and production. Garg S; Heuck G; Ip S; Ramsay E J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254 [TBL] [Abstract][Full Text] [Related]
17. The distribution of cell-penetrating peptides on polymeric nanoparticles prepared using microfluidics and elucidated with small angle X-ray scattering. Streck S; Clulow AJ; Nielsen HM; Rades T; Boyd BJ; McDowell A J Colloid Interface Sci; 2019 Nov; 555():438-448. PubMed ID: 31400536 [TBL] [Abstract][Full Text] [Related]