These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33639594)
21. Ultra-small manganese dioxide nanoparticles with high Jiang Y; Gu H; Cai Z; Fu S; Cao Y; Jiang L; Wu C; Chen W; Xia C; Lui S; Song B; Gong Q; Ai H Biomater Sci; 2023 Jun; 11(12):4359-4369. PubMed ID: 37144293 [TBL] [Abstract][Full Text] [Related]
22. Nuclear magnetic relaxation dispersion of murine tissue for development of T Araya YT; Martínez-Santiesteban F; Handler WB; Harris CT; Chronik BA; Scholl TJ NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 29044888 [TBL] [Abstract][Full Text] [Related]
23. Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly(lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery. Jing L; Liang X; Li X; Yang Y; Dai Z Acta Biomater; 2013 Dec; 9(12):9434-41. PubMed ID: 23962645 [TBL] [Abstract][Full Text] [Related]
24. Manganese-Based Layered Double Hydroxide Nanoparticles as a T Li B; Gu Z; Kurniawan N; Chen W; Xu ZP Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585312 [TBL] [Abstract][Full Text] [Related]
25. Relaxivity Enhancement of Hybrid Micelles via Modulation of Water Coordination Numbers for Magnetic Resonance Lymphography. Jiang Y; Cai Z; Fu S; Gu H; Fu X; Zhu J; Ke Y; Jiang H; Cao W; Wu C; Xia C; Lui S; Song B; Gong Q; Ai H Nano Lett; 2023 Sep; 23(18):8505-8514. PubMed ID: 37695636 [TBL] [Abstract][Full Text] [Related]
26. Manganese(iii)-chelated porphyrin microbubbles for enhanced ultrasound/MR bimodal tumor imaging through ultrasound-mediated micro-to-nano conversion. Chen M; Liang X; Dai Z Nanoscale; 2019 May; 11(21):10178-10182. PubMed ID: 31111845 [TBL] [Abstract][Full Text] [Related]
27. Binding of manganese and iron tetraphenylporphine sulfonates to albumin is relevant to their contrast properties. Yushmanov VE; Tominaga TT; Borissevitch IE; Imasato H; Tabak M Magn Reson Imaging; 1996; 14(3):255-61. PubMed ID: 8725191 [TBL] [Abstract][Full Text] [Related]
28. Mn Devreux M; Henoumont C; Dioury F; Boutry S; Vacher O; Elst LV; Port M; Muller RN; Sandre O; Laurent S Inorg Chem; 2021 Mar; 60(6):3604-3619. PubMed ID: 33625836 [TBL] [Abstract][Full Text] [Related]
29. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. Henig J; Tóth E; Engelmann J; Gottschalk S; Mayer HA Inorg Chem; 2010 Jul; 49(13):6124-38. PubMed ID: 20527901 [TBL] [Abstract][Full Text] [Related]
31. Composition-Tunable Ultrasmall Manganese Ferrite Nanoparticles: Insights into their Miao Y; Xie Q; Zhang H; Cai J; Liu X; Jiao J; Hu S; Ghosal A; Yang Y; Fan H Theranostics; 2019; 9(6):1764-1776. PubMed ID: 31037137 [TBL] [Abstract][Full Text] [Related]
32. Magnetic resonance imaging-histomorphologic correlation studies on paramagnetic metalloporphyrins in rat models of necrosis. Ni Y; Petré C; Miao Y; Yu J; Cresens E; Adriaens P; Bosmans H; Semmler W; Baert AL; Marchal G Invest Radiol; 1997 Dec; 32(12):770-9. PubMed ID: 9406018 [TBL] [Abstract][Full Text] [Related]
33. The importance of nuclear magnetic relaxation dispersion (NMRD) profiles in MRI contrast media development. Muller RN; Vander Elst L; Rinck PA; Vallet P; Maton F; Fischer H; Roch A; Van Haverbeke Y Invest Radiol; 1988 Sep; 23 Suppl 1():S229-31. PubMed ID: 3198350 [TBL] [Abstract][Full Text] [Related]
34. Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity. Liu ZJ; Song XX; Tang Q Nanoscale; 2013 Jun; 5(11):5073-9. PubMed ID: 23640287 [TBL] [Abstract][Full Text] [Related]
36. A Manganese Alternative to Gadolinium for MRI Contrast. Gale EM; Atanasova IP; Blasi F; Ay I; Caravan P J Am Chem Soc; 2015 Dec; 137(49):15548-57. PubMed ID: 26588204 [TBL] [Abstract][Full Text] [Related]
37. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent. Varga-Szemes A; Kiss P; Rab A; Suranyi P; Lenkey Z; Simor T; Bryant RG; Elgavish GA PLoS One; 2016; 11(2):e0149260. PubMed ID: 26872055 [TBL] [Abstract][Full Text] [Related]
38. Manganese(III) porphyrins complexed with P22 virus-like particles as T1-enhanced contrast agents for magnetic resonance imaging. Qazi S; Uchida M; Usselman R; Shearer R; Edwards E; Douglas T J Biol Inorg Chem; 2014 Feb; 19(2):237-46. PubMed ID: 24362518 [TBL] [Abstract][Full Text] [Related]
39. Synthesis, characterization, and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity. Parac-Vogt TN; Kimpe K; Laurent S; Vander Elst L; Burtea C; Chen F; Muller RN; Ni Y; Verbruggen A; Binnemans K Chemistry; 2005 May; 11(10):3077-86. PubMed ID: 15776492 [TBL] [Abstract][Full Text] [Related]
40. Relaxivity of Gd-Based MRI Contrast Agents in Crosslinked Hyaluronic Acid as a Model for Tissues. Fragai M; Ravera E; Tedoldi F; Luchinat C; Parigi G Chemphyschem; 2019 Sep; 20(17):2204-2209. PubMed ID: 31298452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]