BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33639733)

  • 1. Solvation effects on diffusion processes of a macromolecule: Accuracy required for radial distribution function to calculate diffusion coefficient.
    Nakamura Y; Yoshimori A; Akiyama R
    J Chem Phys; 2021 Feb; 154(8):084501. PubMed ID: 33639733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced density profile of small particles near a large particle: Results of an integral equation theory with an accurate bridge function and a Monte Carlo simulation.
    Nakamura Y; Arai S; Kinoshita M; Yoshimori A; Akiyama R
    J Chem Phys; 2019 Jul; 151(4):044506. PubMed ID: 31370562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference interaction site model investigation of homonuclear hard dumbbells under simple fluid theory closures: comparison with Monte Carlo simulations.
    Munaò G; Costa D; Caccamo C
    J Chem Phys; 2009 Apr; 130(14):144504. PubMed ID: 19368458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations and integral-equation theories for dipolar density interacting disks.
    Rufeil-Fiori E; Banchio AJ
    Phys Rev E; 2023 Dec; 108(6-1):064605. PubMed ID: 38243543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermodynamic self-consistent theory of asymmetric hard-core Yukawa mixtures.
    Pellicane G; Caccamo C
    J Phys Condens Matter; 2016 Oct; 28(41):414009. PubMed ID: 27545096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of penetrable sphere fluids and mixtures near a slit hard wall: a modified bridge density functional approximation.
    Kim SC; Seong BS; Suh SH
    J Chem Phys; 2009 Oct; 131(13):134701. PubMed ID: 19814564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water based on a molecular model behaves like a hard-sphere solvent for a nonpolar solute when the reference interaction site model and related theories are employed.
    Hayashi T; Oshima H; Harano Y; Kinoshita M
    J Phys Condens Matter; 2016 Sep; 28(34):344003. PubMed ID: 27366886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radial distribution function of penetrable sphere fluids to the second order in density.
    Santos A; Malijevský A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021201. PubMed ID: 17358330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourth virial coefficient of additive hard-sphere mixtures in the Percus-Yevick and hypernetted-chain approximations.
    Beltrán-Heredia E; Santos A
    J Chem Phys; 2014 Apr; 140(13):134507. PubMed ID: 24712801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of solvent effects on the coil-globule transition.
    Polson JM; Opps SB; Abou Risk N
    J Chem Phys; 2009 Jun; 130(24):244902. PubMed ID: 19566176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of molecular liquids: cavity and bridge functions of the hard spheroid fluid.
    Cheung DL; Anton L; Allen MP; Masters AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061204. PubMed ID: 16906815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic solutions for Baxter's model of sticky hard sphere fluids within closures different from the Percus-Yevick approximation.
    Gazzillo D; Giacometti A
    J Chem Phys; 2004 Mar; 120(10):4742-54. PubMed ID: 15267334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of ternary additive hard-sphere fluid mixtures.
    Malijevský A; Malijevský A; Yuste SB; Santos A; López de Haro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061203. PubMed ID: 12513273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties of a model system with effective interparticle interaction potential applicable in modeling of complex fluids.
    Zhou S; Jamnik A
    J Phys Chem B; 2008 Nov; 112(44):13862-72. PubMed ID: 18842024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus-Yevick values of the fourth virial coefficient.
    Santos A; Manzano G
    J Chem Phys; 2010 Apr; 132(14):144508. PubMed ID: 20406002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integral equation theories for predicting water structure around molecules.
    Liu Y; Ichiye T
    Biophys Chem; 1999 Apr; 78(1-2):97-111. PubMed ID: 17030306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypernetted-chain-like closure of Ornstein-Zernike equation in multibody dissipative particle dynamics.
    Mo CJ; Qin LZ; Yang LJ
    Phys Rev E; 2017 Oct; 96(4-1):043303. PubMed ID: 29347468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the structure of fluids with piecewise constant interactions: Comparing the accuracy of five efficient integral equation theories.
    Hollingshead KB; Truskett TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043307. PubMed ID: 25974612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein solvation from theory and simulation: Exact treatment of Coulomb interactions in three-dimensional theories.
    Perkyns JS; Lynch GC; Howard JJ; Pettitt BM
    J Chem Phys; 2010 Feb; 132(6):064106. PubMed ID: 20151732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A closure relation to molecular theory of solvation for macromolecules.
    Kobryn AE; Gusarov S; Kovalenko A
    J Phys Condens Matter; 2016 Oct; 28(40):404003. PubMed ID: 27549008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.