These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33639765)

  • 1. Potential energy surfaces for high-energy N + O
    Varga Z; Liu Y; Li J; Paukku Y; Guo H; Truhlar DG
    J Chem Phys; 2021 Feb; 154(8):084304. PubMed ID: 33639765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Many-Body Permutationally Invariant Polynomial Neural Network Potential Energy Surface for N
    Li J; Varga Z; Truhlar DG; Guo H
    J Chem Theory Comput; 2020 Aug; 16(8):4822-4832. PubMed ID: 32610014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential energy surface for high-energy N + N
    Varga Z; Truhlar DG
    Phys Chem Chem Phys; 2021 Dec; 23(46):26273-26284. PubMed ID: 34787127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global and Full-Dimensional Potential Energy Surfaces of the N
    Tao C; Yang J; Hong Q; Sun Q; Li J
    J Phys Chem A; 2023 May; 127(18):4027-4042. PubMed ID: 37128765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential energy surfaces for O + O
    Varga Z; Paukku Y; Truhlar DG
    J Chem Phys; 2017 Oct; 147(15):154312. PubMed ID: 29055336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions.
    Nguyen TT; Székely E; Imbalzano G; Behler J; Csányi G; Ceriotti M; Götz AW; Paesani F
    J Chem Phys; 2018 Jun; 148(24):241725. PubMed ID: 29960316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems.
    Li J; Jiang B; Guo H
    J Chem Phys; 2013 Nov; 139(20):204103. PubMed ID: 24289340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permutation invariant polynomial neural network approach to fitting potential energy surfaces.
    Jiang B; Guo H
    J Chem Phys; 2013 Aug; 139(5):054112. PubMed ID: 23927248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential energy surfaces of quintet and singlet O
    Paukku Y; Yang KR; Varga Z; Song G; Bender JD; Truhlar DG
    J Chem Phys; 2017 Jul; 147(3):034301. PubMed ID: 28734300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential energy surface of triplet O
    Paukku Y; Varga Z; Truhlar DG
    J Chem Phys; 2018 Mar; 148(12):124314. PubMed ID: 29604894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces.
    Qu C; Yu Q; Van Hoozen BL; Bowman JM; Vargas-Hernández RA
    J Chem Theory Comput; 2018 Jul; 14(7):3381-3396. PubMed ID: 29847723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: method and application to N4.
    Bender JD; Doraiswamy S; Truhlar DG; Candler GV
    J Chem Phys; 2014 Feb; 140(5):054302. PubMed ID: 24511935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points.
    Nandi A; Qu C; Bowman JM
    J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.
    Li J; Guo H
    J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential energy surface of triplet N2O2.
    Varga Z; Meana-Pañeda R; Song G; Paukku Y; Truhlar DG
    J Chem Phys; 2016 Jan; 144(2):024310. PubMed ID: 26772574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions.
    Jiang B; Guo H
    J Chem Phys; 2014 Jul; 141(3):034109. PubMed ID: 25053303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global triplet potential energy surfaces for the N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S) reaction.
    Lin W; Varga Z; Song G; Paukku Y; Truhlar DG
    J Chem Phys; 2016 Jan; 144(2):024309. PubMed ID: 26772573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global ab initio ground-state potential energy surface of N4.
    Paukku Y; Yang KR; Varga Z; Truhlar DG
    J Chem Phys; 2013 Jul; 139(4):044309. PubMed ID: 23901982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the sextet potential energy surface in O
    Huang X; Cheng XL
    Phys Chem Chem Phys; 2023 Feb; 25(6):4929-4938. PubMed ID: 36722789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Fitting potential energy surfaces with fundamental invariant neural network.
    Shao K; Chen J; Zhao Z; Zhang DH
    J Chem Phys; 2016 Aug; 145(7):071101. PubMed ID: 27544080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.