These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33639765)

  • 21. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide.
    Qu C; Bowman JM
    J Chem Phys; 2019 Apr; 150(14):141101. PubMed ID: 30981221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Agrawal PM; Komanduri R
    J Chem Phys; 2009 May; 130(18):184102. PubMed ID: 19449903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry.
    Li J; Song K; Behler J
    Phys Chem Chem Phys; 2019 May; 21(19):9672-9682. PubMed ID: 30672927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permutationally invariant polynomial potential energy surfaces for tropolone and H and D atom tunneling dynamics.
    Houston P; Conte R; Qu C; Bowman JM
    J Chem Phys; 2020 Jul; 153(2):024107. PubMed ID: 32668941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing feed-forward artificial neural networks to fit potential energy surfaces for molecular simulation of high-temperature gas flows.
    Valentini P; Grover MS; Josyula E
    Phys Rev E; 2020 Nov; 102(5-1):053302. PubMed ID: 33327180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameterization Strategies for Intermolecular Potentials for Predicting Trajectory-Based Collision Parameters.
    Jasper AW; Davis MJ
    J Phys Chem A; 2019 Apr; 123(16):3464-3480. PubMed ID: 30950615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From ab initio data to high-dimensional potential energy surfaces: A critical overview and assessment of the development of permutationally invariant polynomial potential energy surfaces for single molecules.
    Brown SE
    J Chem Phys; 2019 Nov; 151(19):194111. PubMed ID: 31757150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semiclassical Trajectory Studies of Reactive and Nonreactive Scattering of OH(A
    Han S; de Oliveira-Filho AGS; Shu Y; Truhlar DG; Guo H
    Chemphyschem; 2022 Apr; 23(8):e202200039. PubMed ID: 35179813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical/experimental comparison of deep tunneling decay of quasi-bound H(D)OCO to H(D) + CO₂.
    Wagner AF; Dawes R; Continetti RE; Guo H
    J Chem Phys; 2014 Aug; 141(5):054304. PubMed ID: 25106584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices.
    Xie C; Zhu X; Yarkony DR; Guo H
    J Chem Phys; 2018 Oct; 149(14):144107. PubMed ID: 30316273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms.
    Chen R; Shao K; Fu B; Zhang DH
    J Chem Phys; 2020 May; 152(20):204307. PubMed ID: 32486688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Permutationally Restrained Diabatization by Machine Intelligence.
    Shu Y; Varga Z; Sampaio de Oliveira-Filho AG; Truhlar DG
    J Chem Theory Comput; 2021 Feb; 17(2):1106-1116. PubMed ID: 33405927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy.
    Kamath A; Vargas-Hernández RA; Krems RV; Carrington T; Manzhos S
    J Chem Phys; 2018 Jun; 148(24):241702. PubMed ID: 29960346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl.
    Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM
    J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permutationally Invariant Polynomial Expansions with Unrestricted Complexity.
    Moberg DR; Jasper AW
    J Chem Theory Comput; 2021 Sep; 17(9):5440-5455. PubMed ID: 34469127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cis-->trans, trans-->cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting.
    Le HM; Raff LM
    J Chem Phys; 2008 May; 128(19):194310. PubMed ID: 18500868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural Network Potential Energy Surfaces for Small Molecules and Reactions.
    Manzhos S; Carrington T
    Chem Rev; 2021 Aug; 121(16):10187-10217. PubMed ID: 33021368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory.
    Nandi A; Qu C; Houston PL; Conte R; Bowman JM
    J Chem Phys; 2021 Feb; 154(5):051102. PubMed ID: 33557535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Permutationally Invariant Potential Energy Surfaces.
    Qu C; Yu Q; Bowman JM
    Annu Rev Phys Chem; 2018 Apr; 69():151-175. PubMed ID: 29401038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods.
    Houston PL; Qu C; Nandi A; Conte R; Yu Q; Bowman JM
    J Chem Phys; 2022 Jan; 156(4):044120. PubMed ID: 35105104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.