These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33639765)

  • 41. A nested molecule-independent neural network approach for high-quality potential fits.
    Manzhos S; Wang X; Dawes R; Carrington T
    J Phys Chem A; 2006 Apr; 110(16):5295-304. PubMed ID: 16623455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Full-dimensional global potential energy surfaces describing abstraction and exchange for the H + H2S reaction.
    Lu D; Li J
    J Chem Phys; 2016 Jul; 145(1):014303. PubMed ID: 27394104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potential energy and dipole moment surfaces of the triplet states of the O
    Karman T; van der Avoird A; Groenenboom GC
    J Chem Phys; 2017 Aug; 147(8):084306. PubMed ID: 28863529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical Investigations of Rate Coefficients for H + O
    Zuo J; Chen Q; Hu X; Guo H; Xie D
    J Phys Chem A; 2020 Aug; 124(32):6427-6437. PubMed ID: 32686427
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases.
    Malshe M; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2010 May; 132(20):204103. PubMed ID: 20515084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the robosurfer Program System.
    Győri T; Czakó G
    J Chem Theory Comput; 2020 Jan; 16(1):51-66. PubMed ID: 31851508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting.
    Le HM; Huynh S; Raff LM
    J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. QCT calculations of O
    Geistfeld E; Schwartzentruber TE
    J Chem Phys; 2020 Nov; 153(18):184302. PubMed ID: 33187413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PESPIP: Software to fit complex molecular and many-body potential energy surfaces with permutationally invariant polynomials.
    Houston PL; Qu C; Yu Q; Conte R; Nandi A; Li JK; Bowman JM
    J Chem Phys; 2023 Jan; 158(4):044109. PubMed ID: 36725524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient Generation of Permutationally Invariant Potential Energy Surfaces for Large Molecules.
    Conte R; Qu C; Houston PL; Bowman JM
    J Chem Theory Comput; 2020 May; 16(5):3264-3272. PubMed ID: 32212729
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ring-polymer molecular dynamical calculations for the F + HCl → HF + Cl reaction on the ground 1
    Bai M; Lu D; Li Y; Li J
    Phys Chem Chem Phys; 2016 Nov; 18(47):32031-32041. PubMed ID: 27407007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy exchange rate coefficients from vibrational inelastic O
    Hong Q; Sun Q; Pirani F; Valentín-Rodríguez MA; Hernández-Lamoneda R; Coletti C; Hernández MI; Bartolomei M
    J Chem Phys; 2021 Feb; 154(6):064304. PubMed ID: 33588556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks.
    Raff LM; Malshe M; Hagan M; Doughan DI; Rockley MG; Komanduri R
    J Chem Phys; 2005 Feb; 122(8):84104. PubMed ID: 15836017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interpolation of multi-sheeted multi-dimensional potential-energy surfaces via a linear optimization procedure.
    Opalka D; Domcke W
    J Chem Phys; 2013 Jun; 138(22):224103. PubMed ID: 23781779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ab initio based double-sheeted DMBE potential energy surface for N3(2A″) and exploratory dynamics calculations.
    Galvão BR; Varandas AJ
    J Phys Chem A; 2011 Nov; 115(44):12390-8. PubMed ID: 21928767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H
    Liu Y; Li J
    Phys Chem Chem Phys; 2019 Nov; 21(43):24101-24111. PubMed ID: 31657386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.
    Heaps CW; Mazziotti DA
    J Chem Phys; 2016 Apr; 144(16):164108. PubMed ID: 27131532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Line-shape theory of the X
    Karman T; van der Avoird A; Groenenboom GC
    J Chem Phys; 2017 Aug; 147(8):084307. PubMed ID: 28863543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A self-starting method for obtaining analytic potential-energy surfaces from ab initio electronic structure calculations.
    Agrawal PM; Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnum S; Komanduri R
    J Phys Chem A; 2009 Feb; 113(5):869-77. PubMed ID: 19123779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.