These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33639786)

  • 1. A high frequency, power, and efficiency diaphragm acoustic-to-electric transducer for thermoacoustic engines and refrigerators.
    Steiner TW; Antonelli KB; Archibald GDS; De Chardon B; Gottfried KT; Malekian M; Kostka P
    J Acoust Soc Am; 2021 Feb; 149(2):948. PubMed ID: 33639786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.
    Holzinger T; Emmert T; Polifke W
    J Acoust Soc Am; 2014 Nov; 136(5):2432-40. PubMed ID: 25373945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of electrodynamic drivers in thermoacoustic refrigerators.
    Wakeland RS
    J Acoust Soc Am; 2000 Feb; 107(2):827-32. PubMed ID: 10687692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.
    Gonen E; Grossman G
    J Acoust Soc Am; 2015 Sep; 138(3):1537-48. PubMed ID: 26428791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2003 Mar; 113(3):1317-24. PubMed ID: 12656366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers.
    Qi Q; Li Z; Yin H; Feng Y; Zhou Z; Rong D
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive tuning of an electrodynamically driven thermoacoustic cooler.
    Li Y; Minner BL; Chiu GT; Mongeau L; Braun JE
    J Acoust Soc Am; 2002 Mar; 111(3):1251-8. PubMed ID: 11931301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.
    Patch SK; Hull D; See WA; Hanson GW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):245-55. PubMed ID: 26731749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoacoustics with idealized heat exchangers and no stack.
    Wakeland RS; Keolian RM
    J Acoust Soc Am; 2002 Jun; 111(6):2654-64. PubMed ID: 12083198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on the conversion of thermoacoustic power into electricity.
    Timmer MAG; de Blok K; van der Meer TH
    J Acoust Soc Am; 2018 Feb; 143(2):841. PubMed ID: 29495704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin thermoacoustic nanobridge loudspeakers from ALD on polyimide.
    Brown JJ; Moore NC; Supekar OD; Gertsch JC; Bright VM
    Nanotechnology; 2016 Nov; 27(47):475504. PubMed ID: 27779111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes.
    Poese ME; Garrett SL
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2480-6. PubMed ID: 10830371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic characteristics of looped-tube thermoacoustic refrigerators with external and in-built acoustic drivers: A comparative study.
    Chen G; Xu J
    J Acoust Soc Am; 2021 Dec; 150(6):4406. PubMed ID: 34972271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine.
    Ahmed F; Yu G; Luo E
    J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplifying the power density in thermoacoustic systems using a spring component.
    Tijani MEH; Lycklama À Nijeholt JA; Spoelstra S
    J Acoust Soc Am; 2024 Jul; 156(1):202-213. PubMed ID: 38975836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of acoustic pressure spectrum shifting toward lower frequencies in applied current thermoacoustic imaging.
    Zhang W; Xia H; Li X; Li Y; Li S; Liu G
    Phys Med Biol; 2024 Jun; 69(12):. PubMed ID: 38788728
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.