These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33639848)

  • 1. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. 'Sultana') against salt stress.
    Gohari G; Panahirad S; Sadeghi M; Akbari A; Zareei E; Zahedi SM; Bahrami MK; Fotopoulos V
    BMC Plant Biol; 2021 Feb; 21(1):120. PubMed ID: 33639848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: A promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana).
    Panahirad S; Dadpour M; Gohari G; Akbari A; Mahdavinia G; Jafari H; Kulak M; Alcázar R; Fotopoulos V
    Plant Physiol Biochem; 2023 Apr; 197():107653. PubMed ID: 36965321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline.
    Gohari G; Panahirad S; Sepehri N; Akbari A; Zahedi SM; Jafari H; Dadpour MR; Fotopoulos V
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42877-42890. PubMed ID: 33829379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions.
    Gohari G; Zareei E; Rostami H; Panahirad S; Kulak M; Farhadi H; Amini M; Martinez-Ballesta MDC; Fotopoulos V
    Ecotoxicol Environ Saf; 2021 Sep; 220():112402. PubMed ID: 34090105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foliar application of chitosan-putrescine nanoparticles (CTS-Put NPs) alleviates cadmium toxicity in grapevine (Vitis vinifera L.) cv. Sultana: modulation of antioxidant and photosynthetic status.
    Panahirad S; Gohari G; Mahdavinia G; Jafari H; Kulak M; Fotopoulos V; Alcázar R; Dadpour M
    BMC Plant Biol; 2023 Sep; 23(1):411. PubMed ID: 37667189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl jasmonate promotes salinity adaptation responses in two grapevine (Vitis vinifera L.) cultivars differing in salt tolerance.
    Karimi R; Gavili-Kilaneh K; Khadivi A
    Food Chem; 2022 May; 375():131667. PubMed ID: 34865921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. 'Sultana') under salinity stress.
    Aazami MA; Maleki M; Rasouli F; Gohari G
    Sci Rep; 2023 Jan; 13(1):883. PubMed ID: 36650251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles.
    Gohari G; Farhadi H; Panahirad S; Zareei E; Labib P; Jafari H; Mahdavinia G; Hassanpouraghdam MB; Ioannou A; Kulak M; Fotopoulos V
    Int J Biol Macromol; 2023 Jan; 224():893-907. PubMed ID: 36283550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil-based nano-graphene oxide and foliar selenium and nano-Fe influence physiological responses of 'Sultana' grape under salinity.
    Aazami MA; Mehrabani LV; Hashemi T; Hassanpouraghdam MB; Rasouli F
    Sci Rep; 2022 Mar; 12(1):4234. PubMed ID: 35273327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity.
    Khan I; Raza MA; Awan SA; Shah GA; Rizwan M; Ali B; Tariq R; Hassan MJ; Alyemeni MN; Brestic M; Zhang X; Ali S; Huang L
    Plant Physiol Biochem; 2020 Nov; 156():221-232. PubMed ID: 32979796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress.
    Mahawar L; Živčák M; Barboricova M; Kovár M; Filaček A; Ferencova J; Vysoká DM; Brestič M
    Plant Physiol Biochem; 2024 Jan; 206():108281. PubMed ID: 38157834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt Stress Mitigation via the Foliar Application of Chitosan-Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (
    Sheikhalipour M; Esmaielpour B; Gohari G; Haghighi M; Jafari H; Farhadi H; Kulak M; Kalisz A
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.
    Ikbal FE; Hernández JA; Barba-Espín G; Koussa T; Aziz A; Faize M; Diaz-Vivancos P
    J Plant Physiol; 2014 Jun; 171(10):779-88. PubMed ID: 24877669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings.
    Zhou YL; Huo SF; Wang LT; Meng JF; Zhang ZW; Xi ZM
    Plant Physiol Biochem; 2018 Sep; 130():555-565. PubMed ID: 30099273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings.
    Sheteiwy MS; Shao H; Qi W; Daly P; Sharma A; Shaghaleh H; Hamoud YA; El-Esawi MA; Pan R; Wan Q; Lu H
    J Sci Food Agric; 2021 Mar; 101(5):2027-2041. PubMed ID: 32949013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.
    Penella C; Landi M; Guidi L; Nebauer SG; Pellegrini E; San Bautista A; Remorini D; Nali C; López-Galarza S; Calatayud A
    J Plant Physiol; 2016 Apr; 193():1-11. PubMed ID: 26918569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycine betaine functionalized graphene oxide as a new engineering nanoparticle lessens salt stress impacts in sweet basil (Ocimum basilicum L.).
    Ganjavi AS; Oraei M; Gohari G; Akbari A; Faramarzi A
    Plant Physiol Biochem; 2021 May; 162():14-26. PubMed ID: 33662868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress.
    Ju YL; Yue XF; Zhao XF; Zhao H; Fang YL
    Plant Physiol Biochem; 2018 Sep; 130():501-510. PubMed ID: 30096685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration.
    Aazami MA; Rasouli F; Ebrahimzadeh A
    BMC Plant Biol; 2021 Dec; 21(1):597. PubMed ID: 34915853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.