These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 336399)
1. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length. Giesen M; Erdmann VA FEBS Lett; 1977 Nov; 83(1):125-7. PubMed ID: 336399 [No Abstract] [Full Text] [Related]
2. Synthesis of guanosine polyphosphates (pppGpp and ppGpp) and its regulation by aminoacyl-tRNA. Ogawa Y; Sy J J Biochem; 1977 Oct; 82(4):947-53. PubMed ID: 336616 [No Abstract] [Full Text] [Related]
3. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes. Belitsina NV; Klyachko EV; Shakulov RS FEBS Lett; 1983 Oct; 162(1):39-42. PubMed ID: 6352335 [TBL] [Abstract][Full Text] [Related]
4. Role of the aminoacyl end of transfer RNA in the allosteric control of guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of Escherichia coli. Chinali G; Liou R; Ofengand J Biochemistry; 1978 Jul; 17(14):2761-8. PubMed ID: 356874 [No Abstract] [Full Text] [Related]
5. Synthesis of pppGpp by ribosomes from an Escherichia coli spoT mutant and the metabolic relationship between pppGpp and ppGpp. Leung KL; Yamazaki H Can J Biochem; 1977 Dec; 55(12):1207-12. PubMed ID: 340016 [TBL] [Abstract][Full Text] [Related]
6. Discrimination between purine and pyrimidine base at the 3' terminus of the tRNA molecule by the stringent factor system from Escherichia coli. Richter D Biochem Biophys Res Commun; 1978 Mar; 81(2):359-65. PubMed ID: 352346 [No Abstract] [Full Text] [Related]
7. Eukaryotic ribosomal proteins stimulate Escherichia coli stringent factor to synthesize guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate, 3'-diphosphate (ppGpp). Martini O; Richter D Mol Gen Genet; 1978 Nov; 166(3):291-7. PubMed ID: 216901 [TBL] [Abstract][Full Text] [Related]
8. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli. Sprinzl M; Richter D Eur J Biochem; 1976 Dec; 71(1):171-6. PubMed ID: 795660 [TBL] [Abstract][Full Text] [Related]
9. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases. Fehr S; Richter D J Bacteriol; 1981 Jan; 145(1):68-73. PubMed ID: 6161916 [TBL] [Abstract][Full Text] [Related]
10. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli. Ofengand J; Liou R Nucleic Acids Res; 1978 Apr; 5(4):1325-34. PubMed ID: 349503 [TBL] [Abstract][Full Text] [Related]
11. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate. Chinali G; Horowitz J; Ofengand J Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Haseltine WA; Block R Proc Natl Acad Sci U S A; 1973 May; 70(5):1564-8. PubMed ID: 4576025 [TBL] [Abstract][Full Text] [Related]
13. The temperature sensitive mutant 72c. II. Accumulation at high temperature of ppGpp and pppGpp in the presence of protein synthesis. Takata R; Isaksson LA Mol Gen Genet; 1978 Apr; 161(1):15-21. PubMed ID: 353496 [TBL] [Abstract][Full Text] [Related]
14. Altered specificity of synthesis of guanosine tetraphosphate (ppGpp) and pentaphosphate (ppGpp) by salt-washed ribosomes. Ramagopal S Biochem Biophys Res Commun; 1974 May; 58(1):268-71. PubMed ID: 4598443 [No Abstract] [Full Text] [Related]
15. Guanosine polyphosphate production of Escherichia coli stringent and relaxed strains in the stationary phase of growth. Kramer M; Kecskés E ; Horváth I Acta Microbiol Acad Sci Hung; 1981; 28(2):165-70. PubMed ID: 7020351 [TBL] [Abstract][Full Text] [Related]
16. Induction of stringent response by streptomycin in Bacillus subtilis cells. Ikehara K; Kamitani E; Koarata C; Ogura A J Biochem; 1985 Feb; 97(2):697-700. PubMed ID: 2409074 [TBL] [Abstract][Full Text] [Related]
17. Questioning of reported evidence for guanosine tetraphosphate synthesis in a ribosome system from mouse embryos. Martini O; Irr J; Richter D Cell; 1977 Dec; 12(4):1127-31. PubMed ID: 340046 [TBL] [Abstract][Full Text] [Related]
18. A new transfer RNA fragment reaction: Tp psi pCpGp bound to a ribosome-messenger RNA complex induces the synthesis of guanosine tetra- and pentaphosphates. Richter D; Erdmann VA; Sprinzl M Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3226-9. PubMed ID: 4606128 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional inhibition and production of guanosine polyphosphates in Bacillus subtilis. Price VL; Brown LR J Bacteriol; 1981 Sep; 147(3):752-6. PubMed ID: 6792187 [TBL] [Abstract][Full Text] [Related]
20. Role of a hisU gene in the control of stable RNA synthesis in Salmonella typhimurium. Davidson JP; Wilson DJ; Williams LS J Mol Biol; 1982 May; 157(2):237-64. PubMed ID: 6180170 [No Abstract] [Full Text] [Related] [Next] [New Search]