These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 33639960)

  • 21. Redox control of vascular smooth muscle cell function and plasticity.
    Durgin BG; Straub AC
    Lab Invest; 2018 Oct; 98(10):1254-1262. PubMed ID: 29463879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia.
    Ashino T; Yamamoto M; Yoshida T; Numazawa S
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):760-8. PubMed ID: 23413426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension.
    Knock GA
    Free Radic Biol Med; 2019 Dec; 145():385-427. PubMed ID: 31585207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of exercise training on redox signaling in cardiovascular diseases.
    Campos JC; Gomes KM; Ferreira JC
    Food Chem Toxicol; 2013 Dec; 62():107-19. PubMed ID: 23978413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of antioxidants in redox regulation of diabetic cardiovascular complications.
    Turan B
    Curr Pharm Biotechnol; 2010 Dec; 11(8):819-36. PubMed ID: 20874678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular redox dysfunction in the development of cardiovascular diseases.
    Kanaan GN; Harper ME
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2822-2829. PubMed ID: 28778485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells: role of thioredoxin.
    Xu S; He Y; Vokurkova M; Touyz RM
    Hypertension; 2009 Aug; 54(2):427-33. PubMed ID: 19564543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase-Dependent Mechanisms.
    Alves-Lopes R; Neves KB; Montezano AC; Harvey A; Carneiro FS; Touyz RM; Tostes RC
    Hypertension; 2016 Oct; 68(4):1056-64. PubMed ID: 27528061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apoptosis in resistance arteries induced by hydrogen peroxide: greater resilience of endothelium versus smooth muscle.
    Shaw RL; Norton CE; Segal SS
    Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1625-H1633. PubMed ID: 33606587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology.
    DeVallance E; Li Y; Jurczak MJ; Cifuentes-Pagano E; Pagano PJ
    Antioxid Redox Signal; 2019 Oct; 31(10):687-709. PubMed ID: 31250671
    [No Abstract]   [Full Text] [Related]  

  • 32. Oxidative Stress and Hypertension.
    Griendling KK; Camargo LL; Rios FJ; Alves-Lopes R; Montezano AC; Touyz RM
    Circ Res; 2021 Apr; 128(7):993-1020. PubMed ID: 33793335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research.
    Montezano AC; Touyz RM
    Antioxid Redox Signal; 2014 Jan; 20(1):164-82. PubMed ID: 23600794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress.
    Spahis S; Borys JM; Levy E
    Antioxid Redox Signal; 2017 Mar; 26(9):445-461. PubMed ID: 27302002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation.
    Bruder-Nascimento T; Chinnasamy P; Riascos-Bernal DF; Cau SB; Callera GE; Touyz RM; Tostes RC; Sibinga NE
    J Mol Cell Cardiol; 2014 Jan; 66():18-26. PubMed ID: 24445059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid.
    Shiraiwa M; Fang T; Wei J; Lakey P; Hwang B; Edwards KC; Kapur S; Mena J; Huang YK; Digman MA; Weichenthal SA; Nizkorodov S; Kleinman MT
    Res Rep Health Eff Inst; 2023 Dec; (215):1-56. PubMed ID: 38420854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative metabolism, ROS and NO under oxygen deprivation.
    Blokhina O; Fagerstedt KV
    Plant Physiol Biochem; 2010 May; 48(5):359-73. PubMed ID: 20303775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNF34 ablation promotes cerebrovascular remodeling and hypertension by increasing NADPH-derived ROS generation.
    Fang S; Cheng Y; Deng F; Zhang B
    Neurobiol Dis; 2021 Aug; 156():105396. PubMed ID: 34015492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nicotinamide Adenosine Dinucleotide Phosphate Oxidase-Mediated Signaling in Cardiac Remodeling.
    Visnagri A; Oexner RR; Kmiotek-Wasylewska K; Zhang M; Zoccarato A; Shah AM
    Antioxid Redox Signal; 2023 Feb; 38(4-6):371-387. PubMed ID: 36656669
    [No Abstract]   [Full Text] [Related]  

  • 40. Pulmonary endothelial cell NOX.
    Damico R; Zulueta JJ; Hassoun PM
    Am J Respir Cell Mol Biol; 2012 Aug; 47(2):129-39. PubMed ID: 22499852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.