These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33640233)

  • 1. Using low-cost 3D-printed models of prenatal ultrasonography for visually-impaired expectant persons.
    Nicot R; Hurteloup E; Joachim S; Druelle C; Levaillant JM
    Patient Educ Couns; 2021 Sep; 104(9):2146-2151. PubMed ID: 33640233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal tactile three-dimensional ultrasonography for visually impaired women.
    Nicot R; Joachim S; Levaillant JM
    Acta Obstet Gynecol Scand; 2020 Apr; 99(4):555-556. PubMed ID: 31633797
    [No Abstract]   [Full Text] [Related]  

  • 3. Enabling visually impaired people to learn three-dimensional tactile graphics with a 3DOF haptic mouse.
    Memeo M; Jacono M; Sandini G; Brayda L
    J Neuroeng Rehabil; 2021 Sep; 18(1):146. PubMed ID: 34563218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of oral health education by audio aids, braille and tactile models on the oral health status of visually impaired children of Bhopal City.
    Gautam A; Bhambal A; Moghe S
    J Indian Soc Pedod Prev Dent; 2018; 36(1):82-85. PubMed ID: 29607845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients.
    Awad A; Yao A; Trenfield SJ; Goyanes A; Gaisford S; Basit AW
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32092945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Printing of Prenatal Ultrasonographic Diagnosis of Cleft Lip and Palate: Presenting the Needed "Know-How" and Discussing Its Use in Parental Education.
    Schlund M; Levaillant JM; Nicot R
    Cleft Palate Craniofac J; 2020 Aug; 57(8):1041-1044. PubMed ID: 32462933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive map formation in the blind is enhanced by three-dimensional tactile information.
    Bleau M; van Acker C; Martiniello N; Nemargut JP; Ptito M
    Sci Rep; 2023 Jun; 13(1):9736. PubMed ID: 37322150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Survey on Tactile Displays For Visually Impaired People.
    Yang W; Huang J; Wang R; Zhang W; Liu H; Xiao J
    IEEE Trans Haptics; 2021; 14(4):712-721. PubMed ID: 34077370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printed haptic model from a prenatal surface-rendered oropalatal sonographic view: a new tool in the surgical planning of cleft lip/palate.
    Nicot R; Couly G; Ferri J; Levaillant JM
    Int J Oral Maxillofac Surg; 2018 Jan; 47(1):44-47. PubMed ID: 28673724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a 3D-printed Medication Label for the Blind and Visually Impaired.
    Wong Y; Xu Y; Kang L; Yap KY
    Int J Bioprint; 2020; 6(2):276. PubMed ID: 32782996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Analysis and Proposal of 3D Printing Applications for the Visually Impaired.
    Minatani K
    Stud Health Technol Inform; 2017; 242():918-921. PubMed ID: 28873906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of volumetric (3D) tactile symbols within inclusive tactile maps.
    Gual J; Puyuelo M; Lloveras J
    Appl Ergon; 2015 May; 48():1-10. PubMed ID: 25683526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiencing the Untouchable: A Method for Scientific Exploration and Haptic Fruition of Artworks Microsurface Based on Optical Scanning Profilometry.
    Mazzocato S; Daffara C
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Object Detection Algorithm-Based Braille Image Generation System for the Recognition of Real-Life Obstacles for Visually Impaired People.
    Lee D; Cho J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Haptic Assistive Technology for Individuals Who Are Blind or Visually Impaired.
    Pawluk DT; Adams RJ; Kitada R
    IEEE Trans Haptics; 2015; 8(3):258-78. PubMed ID: 26336151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost Desktop-Based Three-Dimensional-Printed Patient-Specific Craniofacial Models in Surgical Counseling, Consent Taking, and Education of Parent of Craniosynostosis Patients: A Comparison With Conventional Visual Explanation Modalities.
    Alshomer F; AlFaqeeh F; Alariefy M; Altweijri I; Alhumsi T
    J Craniofac Surg; 2019 Sep; 30(6):1652-1656. PubMed ID: 30946228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Media for Visually-Impaired Users of Refreshable Touch Displays: Possibilities and Pitfalls.
    O'Modhrain S; Giudice NA; Gardner JA; Legge GE
    IEEE Trans Haptics; 2015; 8(3):248-57. PubMed ID: 26276998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost Open Source Ultrasound-Sensing Based Navigational Support for the Visually Impaired.
    Petsiuk AL; Pearce JM
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans.
    Heed T; Möller J; Röder B
    Multisens Res; 2015; 28(1-2):173-94. PubMed ID: 26152057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tactile perception recruits functionally related visual areas in the late-blind.
    Goyal MS; Hansen PJ; Blakemore CB
    Neuroreport; 2006 Sep; 17(13):1381-4. PubMed ID: 16932143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.