These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 33640668)

  • 41. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries.
    Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A
    Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.
    Agostini M; Brutti S; Hassoun J
    ACS Appl Mater Interfaces; 2016 May; 8(17):10850-7. PubMed ID: 27052542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In Situ Recombination of Elements in Spent Lithium-Ion Batteries to Recover High-Value γ-LiAlO
    Huang Z; Qiu R; Lin K; Ruan J; Xu Z
    Environ Sci Technol; 2021 Jun; 55(11):7643-7653. PubMed ID: 33983726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.
    Li J; Wang G; Xu Z
    Waste Manag; 2016 Jun; 52():221-7. PubMed ID: 27021697
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct recovery of degraded LiCoO
    Yang H; Deng B; Jing X; Li W; Wang D
    Waste Manag; 2021 Jun; 129():85-94. PubMed ID: 34044320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-value utilization of graphite electrodes in spent lithium-ion batteries: From 3D waste graphite to 2D graphene oxide.
    Yu J; Lin M; Tan Q; Li J
    J Hazard Mater; 2021 Jan; 401():123715. PubMed ID: 33113723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.
    Boxall NJ; Adamek N; Cheng KY; Haque N; Bruckard W; Kaksonen AH
    Waste Manag; 2018 Apr; 74():435-445. PubMed ID: 29317159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of MnO
    Zhao T; Yao Y; Wang M; Chen R; Yu Y; Wu F; Zhang C
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25369-25376. PubMed ID: 28677949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recovery of lithium and copper from anode electrode materials of spent LIBs by acidic leaching.
    Agarwal S; Dhiman S; Gupta H
    Environ Sci Pollut Res Int; 2024 May; 31(23):34249-34257. PubMed ID: 38700765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.
    Kang S; Yu T; Liu T; Guan S
    J Colloid Interface Sci; 2018 Feb; 512():489-496. PubMed ID: 29096110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A review on spent Mn-containing Li-ion batteries: Recovery technologies, challenges, and future perspectives.
    Guo M; Zhang B; Gao M; Deng R; Zhang Q
    J Environ Manage; 2024 Mar; 354():120454. PubMed ID: 38412733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regeneration and characterization of LiNi
    Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z
    Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11960-11966. PubMed ID: 28915021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.