These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 33640668)

  • 61. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11960-11966. PubMed ID: 28915021
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Current Process for the Recycling of Spent Lithium Ion Batteries.
    Zhou LF; Yang D; Du T; Gong H; Luo WB
    Front Chem; 2020; 8():578044. PubMed ID: 33344413
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution.
    Liu K; Tan Q; Liu L; Li J
    Environ Sci Technol; 2019 Aug; 53(16):9781-9788. PubMed ID: 31339306
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate.
    Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z
    Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Binder-free graphene foams for O2 electrodes of Li-O2 batteries.
    Zhang W; Zhu J; Ang H; Zeng Y; Xiao N; Gao Y; Liu W; Hng HH; Yan Q
    Nanoscale; 2013 Oct; 5(20):9651-8. PubMed ID: 23963594
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synergistic effect of ultrasonication and sulfate radical on recovering cobalt and lithium from the spent lithium-ion battery.
    Huang T; Zhang SW; Zhou L; Tao H; Li A
    J Environ Manage; 2022 Mar; 305():114395. PubMed ID: 34972049
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel method for carbon removal and valuable metal recovery by incorporating steam into the reduction-roasting process of spent lithium-ion batteries.
    Peng Q; Zhu X; Li J; Liao Q; Lai Y; Zhang L; Fu Q; Zhu X
    Waste Manag; 2021 Oct; 134():100-109. PubMed ID: 34418740
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Preparation of Layered-Spinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge-Discharge Lithium-Ion Batteries.
    Luo D; Fang S; Yang L; Hirano SI
    ChemSusChem; 2017 Dec; 10(24):4845-4850. PubMed ID: 28718226
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Closed-loop selective recycling process of spent LiNi
    Lin J; Cui C; Zhang X; Fan E; Chen R; Wu F; Li L
    J Hazard Mater; 2022 Feb; 424(Pt D):127757. PubMed ID: 34799163
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid.
    Vieceli N; Casasola R; Lombardo G; Ebin B; Petranikova M
    Waste Manag; 2021 Apr; 125():192-203. PubMed ID: 33706256
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method.
    Gong H; Xiao H; Ye L; Ou X
    Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171
    [TBL] [Abstract][Full Text] [Related]  

  • 80. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system.
    Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y
    Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.