BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33640720)

  • 1. DeepHCS
    Lee G; Oh JW; Her NG; Jeong WK
    Med Image Anal; 2021 May; 70():101995. PubMed ID: 33640720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual organelle self-coding for fluorescence imaging via adversarial learning.
    Nguyen T; Bui V; Thai A; Lam V; Raub C; Chang LC; Nehmetallah G
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image synthesis of monoenergetic CT image in dual-energy CT using kilovoltage CT with deep convolutional generative adversarial networks.
    Kawahara D; Ozawa S; Kimura T; Nagata Y
    J Appl Clin Med Phys; 2021 Apr; 22(4):184-192. PubMed ID: 33599386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC.
    Theagarajan R; Bhanu B
    PLoS One; 2019; 14(3):e0212849. PubMed ID: 30840685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI.
    Bahrami A; Karimian A; Fatemizadeh E; Arabi H; Zaidi H
    Med Phys; 2020 Oct; 47(10):5158-5171. PubMed ID: 32730661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT.
    Kawahara D; Saito A; Ozawa S; Nagata Y
    Comput Biol Med; 2021 Jan; 128():104111. PubMed ID: 33279790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation.
    Sajjad M; Ramzan F; Khan MUG; Rehman A; Kolivand M; Fati SM; Bahaj SA
    Microsc Res Tech; 2021 Dec; 84(12):3023-3034. PubMed ID: 34245203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis.
    Zhang Z; Chen L; Wang Y; Zhang T; Chen YC; Yoon E
    Anal Chem; 2019 Nov; 91(21):14093-14100. PubMed ID: 31601098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMC-Net: Asymmetric and multi-scale convolutional neural network for multi-label HPA classification.
    Xiang S; Liang Q; Hu Y; Tang P; Coppola G; Zhang D; Sun W
    Comput Methods Programs Biomed; 2019 Sep; 178():275-287. PubMed ID: 31416555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence microscopy datasets for training deep neural networks.
    Hagen GM; Bendesky J; Machado R; Nguyen TA; Kumar T; Ventura J
    Gigascience; 2021 May; 10(5):. PubMed ID: 33954794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning-based framework for retinal fundus image enhancement.
    Lee KG; Song SJ; Lee S; Yu HG; Kim DI; Lee KM
    PLoS One; 2023; 18(3):e0282416. PubMed ID: 36928209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue.
    Li D; Hui H; Zhang Y; Tong W; Tian F; Yang X; Liu J; Chen Y; Tian J
    Mol Imaging Biol; 2020 Oct; 22(5):1301-1309. PubMed ID: 32514884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.