BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33640764)

  • 1. Gold nanoparticle based colorimetric sensing strategy for the determination of reducing sugars.
    Brasiunas B; Popov A; Ramanavicius A; Ramanaviciene A
    Food Chem; 2021 Jul; 351():129238. PubMed ID: 33640764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New application of a traditional method: colorimetric sensor array for reducing sugars based on the in-situ formation of core-shell gold nanorod-coated silver nanoparticles by the traditional Tollens reaction.
    Zhang X; Wang Z; Liu Z; Liu B; Wu R; Chen Z; Zuo X
    Mikrochim Acta; 2021 Mar; 188(4):142. PubMed ID: 33774720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid reduction of Au(I→0) strategy for the colorimetric detection and discrimination of proteins.
    Leng Y; Cheng J; Liu C; Wang D; Lu Z; Ma C; Zhang M; Dong Y; Xing X; Yao L; Chen Z
    Mikrochim Acta; 2021 Jul; 188(8):249. PubMed ID: 34254194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl.
    Ular N; Üzer A; Durmazel S; Erçağ E; Apak R
    ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor.
    Naderi M; Hosseini M; Ganjali MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 195():75-83. PubMed ID: 29414585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles.
    Chen XY; Ha W; Shi YP
    Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement.
    Bener M; Şen FB; Apak R
    Talanta; 2018 Sep; 187():148-155. PubMed ID: 29853028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct detection of β-agonists by use of gold nanoparticle-based colorimetric assays.
    He P; Shen L; Liu R; Luo Z; Li Z
    Anal Chem; 2011 Sep; 83(18):6988-95. PubMed ID: 21846151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive and selective colorimetric sensors for uranyl (UO2(2+)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems.
    Lee JH; Wang Z; Liu J; Lu Y
    J Am Chem Soc; 2008 Oct; 130(43):14217-26. PubMed ID: 18837498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.
    Shen L; Chen J; Li N; He P; Li Z
    Anal Chim Acta; 2014 Aug; 839():83-90. PubMed ID: 25066722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles.
    Kong S; Liao M; Gu Y; Li N; Wu P; Zhang T; He H
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():244-250. PubMed ID: 26774816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligands dissociation induced gold nanoparticles aggregation for colorimetric Al
    Luo X; Xie X; Meng Y; Sun T; Ding J; Zhou W
    Anal Chim Acta; 2019 Dec; 1087():76-85. PubMed ID: 31585569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.
    Shi X; Gu W; Zhang C; Zhao L; Peng W; Xian Y
    Dalton Trans; 2015 Mar; 44(10):4623-9. PubMed ID: 25656247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive colorimetric assays for α-glucosidase activity and inhibitor screening based on unmodified gold nanoparticles.
    Chen H; Zhang J; Wu H; Koh K; Yin Y
    Anal Chim Acta; 2015 May; 875():92-8. PubMed ID: 25937110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable colorimetric sensor of Cr
    Sang F; Li X; Zhang Z; Liu J; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():109-116. PubMed ID: 29223455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric determination of F
    Amourizi F; Dashtian K; Ghaedi M; Hajati S
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117606. PubMed ID: 31614272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic.
    Cheng T; Li X; Huang P; Wang H; Wang M; Yang W
    Mikrochim Acta; 2019 Jan; 186(2):94. PubMed ID: 30631938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples.
    Baig MMF; Chen YC
    Anal Bioanal Chem; 2018 Feb; 410(6):1805-1815. PubMed ID: 29368149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of glucose oxidation by gold nanoparticles using nanoceria.
    Lang NJ; Liu B; Liu J
    J Colloid Interface Sci; 2014 Aug; 428():78-83. PubMed ID: 24910038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.