These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33640787)

  • 1. OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction.
    Liu Q; Wang PS; Zhu C; Gaines BB; Zhu T; Bi J; Song M
    J Mol Graph Model; 2021 Jun; 105():107865. PubMed ID: 33640787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Molecular Representations Based on the Wave Transform for Convolutional Neural Networks.
    Kuzminykh D; Polykovskiy D; Kadurin A; Zhebrak A; Baskov I; Nikolenko S; Shayakhmetov R; Zhavoronkov A
    Mol Pharm; 2018 Oct; 15(10):4378-4385. PubMed ID: 29473756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution.
    Li J; Gsaxner C; Pepe A; Schmalstieg D; Kleesiek J; Egger J
    Sci Rep; 2023 Nov; 13(1):20229. PubMed ID: 37981641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BionoiNet: ligand-binding site classification with off-the-shelf deep neural network.
    Shi W; Lemoine JM; Shawky AA; Singha M; Pu L; Yang S; Ramanujam J; Brylinski M
    Bioinformatics; 2020 May; 36(10):3077-3083. PubMed ID: 32053156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design.
    Jiang P; Chi Y; Li XS; Liu X; Hua XS; Xia K
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34958660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions.
    Torng W; Altman RB
    J Chem Inf Model; 2019 Oct; 59(10):4131-4149. PubMed ID: 31580672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction.
    Zhang H; Saravanan KM; Zhang JZH
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding Conventional Protein-Ligand Docking Software with Convolutional Neural Networks.
    Jiang H; Fan M; Wang J; Sarma A; Mohanty S; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2020 Oct; 60(10):4594-4602. PubMed ID: 33100014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks.
    Ge L; Liang H; Yuan J; Thalmann D
    IEEE Trans Pattern Anal Mach Intell; 2019 Apr; 41(4):956-970. PubMed ID: 29993927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric macromolecule identification in cryo-electron tomograms using capsule networks.
    Hajarolasvadi N; Sunkara V; Khavnekar S; Beck F; Brandt R; Baum D
    BMC Bioinformatics; 2022 Aug; 23(1):360. PubMed ID: 36042418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H-CNN: Spatial Hashing Based CNN for 3D Shape Analysis.
    Shao T; Yang Y; Weng Y; Hou Q; Zhou K
    IEEE Trans Vis Comput Graph; 2020 Jul; 26(7):2403-2416. PubMed ID: 30575540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention.
    Chen X; Huang J; Shen T; Zhang H; Xu L; Yang M; Xie X; Yan Y; Yan J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38897656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.