These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33640987)

  • 1. Cutting the line: manipulation of plant immunity by bacterial type III effector proteases.
    Mooney BC; Mantz M; Graciet E; Huesgen PF
    J Exp Bot; 2021 Apr; 72(9):3395-3409. PubMed ID: 33640987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host manipulation by bacterial type III and type IV secretion system effector proteases.
    Viana F; Peringathara SS; Rizvi A; Schroeder GN
    Cell Microbiol; 2021 Nov; 23(11):e13384. PubMed ID: 34392594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The targeting of plant cellular systems by injected type III effector proteins.
    Lewis JD; Guttman DS; Desveaux D
    Semin Cell Dev Biol; 2009 Dec; 20(9):1055-63. PubMed ID: 19540926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria.
    Grant SR; Fisher EJ; Chang JH; Mole BM; Dangl JL
    Annu Rev Microbiol; 2006; 60():425-49. PubMed ID: 16753033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pangenomic analysis reveals plant NAD
    Hulin MT; Hill L; Jones JDG; Ma W
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2217114120. PubMed ID: 36753463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity.
    Mukhi N; Gorenkin D; Banfield MJ
    New Phytol; 2020 Jul; 227(2):326-333. PubMed ID: 32239533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity.
    Espinosa A; Alfano JR
    Cell Microbiol; 2004 Nov; 6(11):1027-40. PubMed ID: 15469432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.
    Li G; Froehlich JE; Elowsky C; Msanne J; Ostosh AC; Zhang C; Awada T; Alfano JR
    Plant J; 2014 Jan; 77(2):310-21. PubMed ID: 24299018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-bacterial pathogen interactions mediated by type III effectors.
    Feng F; Zhou JM
    Curr Opin Plant Biol; 2012 Aug; 15(4):469-76. PubMed ID: 22465133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants.
    Vinatzer BA; Teitzel GM; Lee MW; Jelenska J; Hotton S; Fairfax K; Jenrette J; Greenberg JT
    Mol Microbiol; 2006 Oct; 62(1):26-44. PubMed ID: 16942603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants.
    Goel AK; Lundberg D; Torres MA; Matthews R; Akimoto-Tomiyama C; Farmer L; Dangl JL; Grant SR
    Mol Plant Microbe Interact; 2008 Mar; 21(3):361-70. PubMed ID: 18257685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria.
    Figaj D; Ambroziak P; Przepiora T; Skorko-Glonek J
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30720762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity.
    Hotson A; Mudgett MB
    Curr Opin Plant Biol; 2004 Aug; 7(4):384-90. PubMed ID: 15231260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteases in pathogenesis and plant defence.
    Xia Y
    Cell Microbiol; 2004 Oct; 6(10):905-13. PubMed ID: 15339266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cloak, dagger, and shield: proteases in plant-pathogen interactions.
    Hou S; Jamieson P; He P
    Biochem J; 2018 Aug; 475(15):2491-2509. PubMed ID: 30115747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae.
    Rohmer L; Guttman DS; Dangl JL
    Genetics; 2004 Jul; 167(3):1341-60. PubMed ID: 15280247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice.
    Ji H; Liu D; Zhang Z; Sun J; Han B; Li Z
    Plant J; 2020 Nov; 104(4):1054-1072. PubMed ID: 32881160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The YopJ superfamily in plant-associated bacteria.
    Lewis JD; Lee A; Ma W; Zhou H; Guttman DS; Desveaux D
    Mol Plant Pathol; 2011 Dec; 12(9):928-37. PubMed ID: 21726386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.
    Pogány M; Dankó T; Kámán-Tóth E; Schwarczinger I; Bozsó Z
    Int J Mol Sci; 2015 Sep; 16(10):23177-94. PubMed ID: 26404238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems.
    Zhou H; Morgan RL; Guttman DS; Ma W
    Mol Plant Microbe Interact; 2009 Feb; 22(2):176-89. PubMed ID: 19132870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.