These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 33641140)

  • 1. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds.
    Gendviliene I; Simoliunas E; Alksne M; Dibart S; Jasiuniene E; Cicenas V; Jacobs R; Bukelskiene V; Rutkunas V
    Eur Cell Mater; 2021 Feb; 41():204-215. PubMed ID: 33641140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair.
    Chi H; Chen G; He Y; Chen G; Tu H; Liu X; Yan J; Wang X
    Int J Nanomedicine; 2020; 15():5825-5838. PubMed ID: 32821104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printed polylactic acid and hydroxyapatite composite scaffold with urine-derived stem cells as a treatment for bone defects.
    Zhang X; Chen JL; Xing F; Duan X
    J Mater Sci Mater Med; 2022 Oct; 33(10):71. PubMed ID: 36190568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S; Azarpira N
    Life Sci; 2020 Sep; 257():118038. PubMed ID: 32622947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of induced membranes combined with enhanced bone marrow and 3D PLA-HA on repairing long bone defects in vivo.
    Liu Z; Ge Y; Zhang L; Wang Y; Guo C; Feng K; Yang S; Zhai Z; Chi Y; Zhao J; Liu F
    J Tissue Eng Regen Med; 2020 Oct; 14(10):1403-1414. PubMed ID: 32666697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration.
    Taephatthanasagon T; Purbantoro SD; Rodprasert W; Pathanachai K; Charoenlertkul P; Mahanonda R; Sa-Ard-Lam N; Kuncorojakti S; Soedarmanto A; Jamilah NS; Osathanon T; Sawangmake C; Rattanapuchpong S
    BMC Vet Res; 2024 Sep; 20(1):403. PubMed ID: 39251976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration.
    Alksne M; Kalvaityte M; Simoliunas E; Rinkunaite I; Gendviliene I; Locs J; Rutkunas V; Bukelskiene V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103641. PubMed ID: 32174399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B; Wang N; Jiang Q; Tian L; Hu L; Zhang Z
    J Mater Sci Mater Med; 2021 Jun; 32(6):63. PubMed ID: 34097140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study.
    Tayton E; Purcell M; Aarvold A; Smith JO; Briscoe A; Kanczler JM; Shakesheff KM; Howdle SM; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2014 Aug; 102(8):2613-24. PubMed ID: 24038868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli.
    Bernardo MP; da Silva BCR; Hamouda AEI; de Toledo MAS; Schalla C; Rütten S; Goetzke R; Mattoso LHC; Zenke M; Sechi A
    Sci Rep; 2022 Feb; 12(1):2333. PubMed ID: 35149687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Different Bone Grafting Materials and Mesenchymal Stem Cells on Bone Regeneration: A Micro-Computed Tomography and Histomorphometric Study in a Rabbit Calvarial Defect Model.
    Shiu ST; Lee WF; Chen SM; Hao LT; Hung YT; Lai PC; Feng SW
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of small extracellular vesicles in PEG/HA-Bio-Oss hydrogel composite scaffold for bone regeneration.
    Zheng W; Zhu Z; Hong J; Wang H; Cui L; Zhai Y; Li J; Wang C; Wang Z; Xu L; Hao Y; Cheng G; Ma S
    Biomed Mater; 2024 Oct; 19(6):. PubMed ID: 39312942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia.
    Han SH; Cha M; Jin YZ; Lee KM; Lee JH
    Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties.
    Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenge Tooth Regeneration in Adult Dogs with Dental Pulp Stem Cells on 3D-Printed Hydroxyapatite/Polylactic Acid Scaffolds.
    Chen RS; Hsu SH; Chang HH; Chen MH
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of Cranial Defects in Rabbits with 3D-Printed Hydroxyapatite/Polylactic Acid Composites.
    Fan G; Yang L; Liu D; Wang Y; Ji W; Tukebai ; Qin H; Wang Z
    Biomed Res Int; 2022; 2022():7562291. PubMed ID: 36624851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.