BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33641748)

  • 1. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans.
    Mata-Cabana A; Pérez-Nieto C; Olmedo M
    Adv Genet; 2021; 107():33-87. PubMed ID: 33641748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged quiescence delays somatic stem cell-like divisions in Caenorhabditis elegans and is controlled by insulin signaling.
    Olmedo M; Mata-Cabana A; Rodríguez-Palero MJ; García-Sánchez S; Fernández-Yañez A; Merrow M; Artal-Sanz M
    Aging Cell; 2020 Feb; 19(2):e13085. PubMed ID: 31852031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest.
    Chen Y; Baugh LR
    Dev Biol; 2014 Oct; 394(2):314-26. PubMed ID: 25128585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans.
    Rashid S; Pho KB; Mesbahi H; MacNeil LT
    Bioessays; 2020 Mar; 42(3):e1900194. PubMed ID: 32003906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways.
    Schindler AJ; Baugh LR; Sherwood DR
    PLoS Genet; 2014 Jun; 10(6):e1004426. PubMed ID: 24945623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest.
    Baugh LR
    Genetics; 2013 Jul; 194(3):539-55. PubMed ID: 23824969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.
    Kaplan RE; Chen Y; Moore BT; Jordan JM; Maxwell CS; Schindler AJ; Baugh LR
    PLoS Genet; 2015 Dec; 11(12):e1005731. PubMed ID: 26656736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep Counteracts Aging Phenotypes to Survive Starvation-Induced Developmental Arrest in C. elegans.
    Wu Y; Masurat F; Preis J; Bringmann H
    Curr Biol; 2018 Nov; 28(22):3610-3624.e8. PubMed ID: 30416057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans.
    Kaplan REW; Webster AK; Chitrakar R; Dent JA; Baugh LR
    BMC Biol; 2018 Oct; 16(1):112. PubMed ID: 30296941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline.
    Fukuyama M; Rougvie AE; Rothman JH
    Curr Biol; 2006 Apr; 16(8):773-9. PubMed ID: 16631584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temporal control of cell cycle and cell fate in Caenorhabditis elegans.
    Ambros V
    Novartis Found Symp; 2001; 237():203-14; discussion 214-20. PubMed ID: 11444045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans.
    Rashid S; Wong C; Roy R
    Dev Biol; 2021 Jul; 475():265-276. PubMed ID: 33549550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans.
    Olmedo M; Geibel M; Artal-Sanz M; Merrow M
    Genetics; 2015 Oct; 201(2):443-8. PubMed ID: 26294666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HRP-2, a heterogeneous nuclear ribonucleoprotein, is essential for embryogenesis and oogenesis in Caenorhabditis elegans.
    Kinnaird JH; Maitland K; Walker GA; Wheatley I; Thompson FJ; Devaney E
    Exp Cell Res; 2004 Aug; 298(2):418-30. PubMed ID: 15265690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans.
    Yu X; Vought VE; Conradt B; Maine EM
    Genesis; 2006 Sep; 44(9):412-8. PubMed ID: 16937415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental and reproductive consequences of prolonged non-aging dauer in Caenorhabditis elegans.
    Kim S; Paik YK
    Biochem Biophys Res Commun; 2008 Apr; 368(3):588-92. PubMed ID: 18261976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest.
    Baugh LR; Sternberg PW
    Curr Biol; 2006 Apr; 16(8):780-5. PubMed ID: 16631585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans.
    Zhu H; Shen H; Sewell AK; Kniazeva M; Han M
    Elife; 2013 May; 2():e00429. PubMed ID: 23705068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycomb and Notch signaling regulate cell proliferation potential during
    Coraggio F; Püschel R; Marti A; Meister P
    Life Sci Alliance; 2019 Feb; 2(1):e201800170. PubMed ID: 30599047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kettin, the large actin-binding protein with multiple immunoglobulin domains, is essential for sarcomeric actin assembly and larval development in Caenorhabditis elegans.
    Ono K; Qin Z; Johnsen RC; Baillie DL; Ono S
    FEBS J; 2020 Feb; 287(4):659-670. PubMed ID: 31411810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.