BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33641749)

  • 1. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients.
    Pramitha JL; Rana S; Aggarwal PR; Ravikesavan R; Joel AJ; Muthamilarasan M
    Adv Genet; 2021; 107():89-120. PubMed ID: 33641749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean.
    Kumar A; Kumar V; Krishnan V; Hada A; Marathe A; C P; Jolly M; Sachdev A
    Sci Rep; 2019 May; 9(1):7744. PubMed ID: 31123331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1).
    Ali N; Paul S; Gayen D; Sarkar SN; Datta K; Datta SK
    PLoS One; 2013; 8(7):e68161. PubMed ID: 23844166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants.
    Sahu A; Verma R; Gupta U; Kashyap S; Sanyal I
    Mol Biotechnol; 2024 Jan; 66(1):11-25. PubMed ID: 37061991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (
    Aggarwal S; Kumar A; Bhati KK; Kaur G; Shukla V; Tiwari S; Pandey AK
    Front Plant Sci; 2018; 9():259. PubMed ID: 29559984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
    Gupta PK; Balyan HS; Sharma S; Kumar R
    Theor Appl Genet; 2021 Jan; 134(1):1-35. PubMed ID: 33136168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition.
    Kumar A; Singh B; Raigond P; Sahu C; Mishra UN; Sharma S; Lal MK
    Food Res Int; 2021 Apr; 142():110193. PubMed ID: 33773669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of
    Song JH; Shin G; Kim HJ; Lee SB; Moon JY; Jeong JC; Choi HK; Kim IA; Song HJ; Kim CY; Chung YS
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice.
    Ali N; Paul S; Gayen D; Sarkar SN; Datta SK; Datta K
    Rice (N Y); 2013 May; 6(1):12. PubMed ID: 24280240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.
    Abid N; Khatoon A; Maqbool A; Irfan M; Bashir A; Asif I; Shahid M; Saeed A; Brinch-Pedersen H; Malik KA
    Transgenic Res; 2017 Feb; 26(1):109-122. PubMed ID: 27687031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability.
    Perera I; Seneweera S; Hirotsu N
    Rice (N Y); 2018 Jan; 11(1):4. PubMed ID: 29327163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways.
    Dong J; Yan W; Bock C; Nokhrina K; Keller W; Georges F
    BMC Plant Biol; 2013 May; 13():84. PubMed ID: 23692661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
    de Figueiredo MA; Boldrin PF; Hart JJ; de Andrade MJB; Guilherme LRG; Glahn RP; Li L
    Plant Physiol Biochem; 2017 Feb; 111():193-202. PubMed ID: 27940270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.).
    Bhati KK; Aggarwal S; Sharma S; Mantri S; Singh SP; Bhalla S; Kaur J; Tiwari S; Roy JK; Tuli R; Pandey AK
    Plant Sci; 2014 Jul; 224():74-85. PubMed ID: 24908508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet.
    Silva VM; Putti FF; White PJ; Reis ARD
    Plant Physiol Biochem; 2021 Jul; 164():132-146. PubMed ID: 33991859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling.
    Belgaroui N; Zaidi I; Farhat A; Chouayekh H; Bouain N; Chay S; Curie C; Mari S; Masmoudi K; Davidian JC; Berthomieu P; Rouached H; Hanin M
    Plant Cell Physiol; 2014 Nov; 55(11):1912-24. PubMed ID: 25231959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.).
    Campion B; Sparvoli F; Doria E; Tagliabue G; Galasso I; Fileppi M; Bollini R; Nielsen E
    Theor Appl Genet; 2009 Apr; 118(6):1211-21. PubMed ID: 19224193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytic Acid and Whole Grains for Health Controversy.
    Brouns F
    Nutrients; 2021 Dec; 14(1):. PubMed ID: 35010899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 mediated disruption of
    Ibrahim S; Saleem B; Rehman N; Zafar SA; Naeem MK; Khan MR
    J Adv Res; 2022 Mar; 37():33-41. PubMed ID: 35499048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.