These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33641749)

  • 41. Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution.
    Raboy V
    Trends Plant Sci; 2001 Oct; 6(10):458-62. PubMed ID: 11590064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biofortification for combating 'hidden hunger' for iron.
    Murgia I; Arosio P; Tarantino D; Soave C
    Trends Plant Sci; 2012 Jan; 17(1):47-55. PubMed ID: 22093370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content.
    Nunes AC; Vianna GR; Cuneo F; Amaya-Farfán J; de Capdeville G; Rech EL; Aragão FJ
    Planta; 2006 Jun; 224(1):125-32. PubMed ID: 16395584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems.
    Cominelli E; Confalonieri M; Carlessi M; Cortinovis G; Daminati MG; Porch TG; Losa A; Sparvoli F
    Plant Sci; 2018 May; 270():1-12. PubMed ID: 29576062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries.
    Gibson RS; Hotz C
    Br J Nutr; 2001 May; 85 Suppl 2():S159-66. PubMed ID: 11509105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant?
    Sparvoli F; Cominelli E
    Plants (Basel); 2015 Nov; 4(4):728-55. PubMed ID: 27135349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds.
    Shi J; Wang H; Schellin K; Li B; Faller M; Stoop JM; Meeley RB; Ertl DS; Ranch JP; Glassman K
    Nat Biotechnol; 2007 Aug; 25(8):930-7. PubMed ID: 17676037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biofortification: a new tool to reduce micronutrient malnutrition.
    Bouis HE; Hotz C; McClafferty B; Meenakshi JV; Pfeiffer WH
    Food Nutr Bull; 2011 Mar; 32(1 Suppl):S31-40. PubMed ID: 21717916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally.
    Welch RM
    J Nutr; 2002 Mar; 132(3):495S-499S. PubMed ID: 11880578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds.
    Xu XH; Zhao HJ; Liu QL; Frank T; Engel KH; An G; Shu QY
    Theor Appl Genet; 2009 Jun; 119(1):75-83. PubMed ID: 19370321
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.
    Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M
    Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.
    Bhati KK; Alok A; Kumar A; Kaur J; Tiwari S; Pandey AK
    J Exp Bot; 2016 Jul; 67(14):4379-89. PubMed ID: 27342224
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics.
    Connorton JM; Balk J
    Plant Cell Physiol; 2019 Jul; 60(7):1447-1456. PubMed ID: 31058958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutational Analysis of
    Khan MSS; Basnet R; Islam SA; Shu Q
    J Agric Food Chem; 2019 Oct; 67(41):11436-11443. PubMed ID: 31553599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving the bioavailability of nutrients in plant foods at the household level.
    Gibson RS; Perlas L; Hotz C
    Proc Nutr Soc; 2006 May; 65(2):160-8. PubMed ID: 16672077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods.
    Troesch B; Jing H; Laillou A; Fowler A
    Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic modification of low phytic acid 1-1 maize to enhance iron content and bioavailability.
    Aluru MR; Rodermel SR; Reddy MB
    J Agric Food Chem; 2011 Dec; 59(24):12954-62. PubMed ID: 22088162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study of Seed Ageing in
    Colombo F; Pagano A; Sangiorgio S; Macovei A; Balestrazzi A; Araniti F; Pilu R
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614175
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding.
    Hoppler M; Egli I; Petry N; Gille D; Zeder C; Walczyk T; Blair MW; Hurrell RF
    J Food Sci; 2014 Sep; 79(9):C1629-34. PubMed ID: 25124357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic Analysis and Molecular Mapping of the Quantitative Trait Loci Governing Low Phytic Acid Content in a Novel LPA Rice Mutant, PLM11.
    Gyani PC; Bollinedi H; Gopala Krishnan S; Vinod KK; Sachdeva A; Bhowmick PK; Ellur RK; Nagarajan M; Singh AK
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33302334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.