These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 33641888)

  • 1. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability.
    Curti F; Drăgușin DM; Serafim A; Iovu H; Stancu IC
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111866. PubMed ID: 33641888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Biocomposite Alginate-Cuttlebone-Gelatin 3D Printing Inks Designed for Scaffolds with Bone Regeneration Potential.
    Curti F; Serafim A; Olaret E; Dinescu S; Samoila I; Vasile BS; Iovu H; Lungu A; Stancu IC; Marinescu R
    Mar Drugs; 2022 Oct; 20(11):. PubMed ID: 36354993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications.
    Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM
    Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering.
    Sonaye SY; Ertugral EG; Kothapalli CR; Sikder P
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate/Gelatin-Based Hydrogel with Soy Protein/Peptide Powder for 3D Printing Tissue-Engineering Scaffolds to Promote Angiogenesis.
    Liu Y; Hu Q; Dong W; Liu S; Zhang H; Gu Y
    Macromol Biosci; 2022 Apr; 22(4):e2100413. PubMed ID: 35043585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues.
    Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G
    Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering.
    Chawla D; Kaur T; Joshi A; Singh N
    Int J Biol Macromol; 2020 Feb; 144():560-567. PubMed ID: 31857163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering.
    Park J; Lee SJ; Lee H; Park SA; Lee JY
    Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour
    Souza A; Kevin M; Rodriguez BJ; Reynaud EG
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of 3D Bioactive Scaffolds through 3D Printing Using Wollastonite-Gelatin Inks.
    Curti F; Stancu IC; Voicu G; Iovu H; Dobrita CI; Ciocan LT; Marinescu R; Iordache F
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33092270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches.
    Schwarz S; Kuth S; Distler T; Gögele C; Stölzel K; Detsch R; Boccaccini AR; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111189. PubMed ID: 32806255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing.
    Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A
    Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bovine serum albumin-modified 3D printed alginate dialdehyde-gelatin scaffolds incorporating polydopamine/SiO
    Kim M; Schöbel L; Geske M; Boccaccini AR; Ghorbani F
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130666. PubMed ID: 38453119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair.
    Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H
    Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.