These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 33641921)

  • 1. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of bioactive and biodegradable poly (lactic acid)-tricalcium phosphate scaffolds modified with zinc oxide for guided bone tissue repair.
    Harb SV; Kolanthai E; Pinto LA; Beatrice CAG; Bezerra EOT; Backes EH; Costa LC; Seal S; Pessan LA
    Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38986475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds.
    Harb SV; Kolanthai E; Backes EH; Beatrice CAG; Pinto LA; Nunes ACC; Selistre-de-Araújo HS; Costa LC; Seal S; Pessan LA
    Tissue Eng Regen Med; 2024 Feb; 21(2):223-242. PubMed ID: 37856070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between calcium carbonate and β-tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix.
    Donate R; Monzón M; Ortega Z; Wang L; Ribeiro V; Pestana D; Oliveira JM; Reis RL
    J Tissue Eng Regen Med; 2020 Feb; 14(2):272-283. PubMed ID: 31733089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds.
    Haimi S; Suuriniemi N; Haaparanta AM; Ellä V; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Kellomäki M; Miettinen S; Suuronen R
    Tissue Eng Part A; 2009 Jul; 15(7):1473-80. PubMed ID: 19072198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study.
    Nayak VV; Sanjairaj V; Behera RK; Smay JE; Gupta N; Coelho PG; Witek L
    J Biomed Mater Res B Appl Biomater; 2024 Apr; 112(4):e35402. PubMed ID: 38520704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed PCL/β-TCP/CS composite artificial bone and histocompatibility study.
    Zheng C; Zhang M
    J Orthop Surg Res; 2023 Dec; 18(1):981. PubMed ID: 38129861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration.
    Javkhlan Z; Hsu SH; Chen RS; Chen MH
    J Formos Med Assoc; 2024 Jan; 123(1):71-77. PubMed ID: 37709573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering.
    Wang B; Ye X; Chen G; Zhang Y; Zeng Z; Liu C; Tan Z; Jie X
    Front Bioeng Biotechnol; 2024; 12():1273541. PubMed ID: 38440328
    [No Abstract]   [Full Text] [Related]  

  • 19. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds.
    Nevado P; Lopera A; Bezzon V; Fulla MR; Palacio J; Zaghete MA; Biasotto G; Montoya A; Rivera J; Robledo SM; Estupiñan H; Paucar C; Garcia C
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111013. PubMed ID: 32993985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.