These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33642000)

  • 1. Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification.
    Athira S; Mann B; Sharma R; Pothuraju R; Bajaj RK
    Food Res Int; 2021 Mar; 141():110133. PubMed ID: 33642000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes.
    Udechukwu MC; Downey B; Udenigwe CC
    Food Chem; 2018 Feb; 240():1227-1232. PubMed ID: 28946246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatography and reversed phase-HPLC-tandem mass spectrometry.
    Cruz-Huerta E; Martínez Maqueda D; de la Hoz L; da Silva VS; Pacheco MT; Amigo L; Recio I
    J Dairy Sci; 2016 Jan; 99(1):77-82. PubMed ID: 26601589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of whey peptide-iron complexes: Influence of using different iron precursor compounds.
    Caetano-Silva ME; Alves RC; Lucena GN; Frem RCG; Bertoldo-Pacheco MT; Lima-Pallone JA; Netto FM
    Food Res Int; 2017 Nov; 101():73-81. PubMed ID: 28941699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the absorption of fortification iron. A SUSTAIN Task Force report.
    Hurrell RF; Lynch S; Bothwell T; Cori H; Glahn R; Hertrampf E; Kratky Z; Miller D; Rodenstein M; Streekstra H; Teucher B; Turner E; Yeung CK; Zimmermann MB;
    Int J Vitam Nutr Res; 2004 Nov; 74(6):387-401. PubMed ID: 15743016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability.
    Wu W; Yang Y; Sun N; Bao Z; Lin S
    Food Res Int; 2020 May; 131():108976. PubMed ID: 32247495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of the peptides with calcium-binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates.
    Bingtong L; Yongliang Z; Liping S
    J Food Sci; 2020 Jan; 85(1):114-122. PubMed ID: 31869867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digestion and absorption characteristics of iron-chelating silver carp scale collagen peptide and insights into their chelation mechanism.
    Zhao Q; Liang W; Xiong Z; Li C; Zhang L; Rong J; Xiong S; Liu R; You J; Yin T; Hu Y
    Food Res Int; 2024 Aug; 190():114612. PubMed ID: 38945620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode.
    Zhao L; Huang Q; Huang S; Lin J; Wang S; Huang Y; Hong J; Rao P
    J Agric Food Chem; 2014 Oct; 62(42):10274-82. PubMed ID: 25265391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray-Dried Whey Protein Concentrate-Iron Complex: Preparation and Physicochemical Characterization.
    Banjare IS; Gandhi K; Sao K; Sharma R
    Food Technol Biotechnol; 2019 Sep; 57(3):331-340. PubMed ID: 31866746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of mutual interference between bovine α-lactalbumin peptide and its isotope-labeled peptide in whey protein analysis using liquid chromatography-tandem mass spectrometry.
    Wang Z; Chen Q; Wu Q; Li Q; Chen D; Chu X
    J Chromatogr A; 2018 Jan; 1533():94-101. PubMed ID: 29246421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.
    Caetano-Silva ME; Barros Mariutti LR; Bragagnolo N; Bertoldo-Pacheco MT; Netto FM
    J Agric Food Chem; 2018 Feb; 66(8):1981-1989. PubMed ID: 29397714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics approach based on LC-HRMS for the fast screening of iron(II)-chelating peptides in protein hydrolysates.
    Paris C; Selmeczi K; Ebel B; Stefan L; Csire G; Cakir-Kiefer C; Desobry S; Canabady-Rochelle L; Chaimbault P
    Anal Bioanal Chem; 2021 Jan; 413(2):315-329. PubMed ID: 33386417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses.
    Qu W; Feng Y; Xiong T; Li Y; Wahia H; Ma H
    Ultrason Sonochem; 2022 Feb; 83():105937. PubMed ID: 35144194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization, and antioxidant activity of zein nanoparticles stabilized by whey protein nanofibrils.
    Liu Q; Cheng J; Sun X; Guo M
    Int J Biol Macromol; 2021 Jan; 167():862-870. PubMed ID: 33181219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-Mineral Complexes: Understanding Their Chemical Interactions, Bioavailability, and Potential Application in Mitigating Micronutrient Deficiency.
    Sun X; Sarteshnizi RA; Boachie RT; Okagu OD; Abioye RO; Pfeilsticker Neves R; Ohanenye IC; Udenigwe CC
    Foods; 2020 Oct; 9(10):. PubMed ID: 33023157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Sequencing of Cu-, Fe-, and Zn-Binding Whey Peptides for Potential Neuroprotective Applications as Multitargeted Compounds.
    Caetano-Silva ME; Simabuco FM; Bezerra RMN; da Silva DC; Barbosa EA; Moreira DC; Brand GD; Leite JRSA; Pacheco MTB
    J Agric Food Chem; 2020 Nov; 68(44):12433-12443. PubMed ID: 33095576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and identification of iron-chelating peptides from casein hydrolysates.
    Miao J; Liao W; Pan Z; Wang Q; Duan S; Xiao S; Yang Z; Cao Y
    Food Funct; 2019 May; 10(5):2372-2381. PubMed ID: 30993279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide composition analysis, structural characterization, and prediction of iron binding modes of small molecular weight peptides from mung bean.
    Ding X; Li H; Xu M; Li X; Li M
    Food Res Int; 2024 Jan; 175():113735. PubMed ID: 38129044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, characterization and in vitro activity of hypoglycemic peptides in whey hydrolysates from rubing cheese by-product.
    Li Y; Fan Y; Liu J; Meng Z; Huang A; Xu F; Wang X
    Food Res Int; 2023 Feb; 164():112382. PubMed ID: 36737967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.