BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33642026)

  • 1. Fast dereplication of xanthine oxidase-inhibiting compounds in alfalfa using comparative metabolomics.
    Hsu SJ; Verpoorte R; Lin SM; Lee CK
    Food Res Int; 2021 Mar; 141():110170. PubMed ID: 33642026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive binding experiments can reduce the false positive results of affinity-based ultrafiltration-HPLC: A case study for identification of potent xanthine oxidase inhibitors from Perilla frutescens extract.
    Wang Z; Kwon SH; Hwang SH; Kang YH; Lee JY; Lim SS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1048():30-37. PubMed ID: 28192760
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Gul A; Saad SM; Zafar H; Atia-Tul-Wahab ; Khan KM; Choudhary MI
    Med Chem; 2023; 19(4):384-392. PubMed ID: 35726432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Xanthine Oxidase Inhibitors from Celery Seeds Using Affinity Ultrafiltration-Liquid Chromatography-Mass Spectrometry.
    Gan X; Peng B; Chen L; Jiang Y; Li T; Li B; Liu X
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid characterisation of xanthine oxidase inhibitors from the flowers of Chrysanthemum morifolium Ramat. Using metabolomics approach.
    Loh KE; Chin YS; Safinar Ismail I; Tan HY
    Phytochem Anal; 2022 Jan; 33(1):12-22. PubMed ID: 34000756
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Mehmood A; Rehman AU; Ishaq M; Zhao L; Li J; Usman M; Zhao L; Rehman A; Zad OD; Wang C
    Comb Chem High Throughput Screen; 2020; 23(9):917-930. PubMed ID: 32342806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standardization and xanthine oxidase inhibitory potential of Zanthoxylum armatum fruits.
    Ranjana ; Nooreen Z; Bushra U; Jyotshna ; Bawankule DU; Shanker K; Ahmad A; Tandon S
    J Ethnopharmacol; 2019 Feb; 230():1-8. PubMed ID: 30342965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the interaction between Chrysoeriol and xanthine oxidase using computational and in vitro approaches.
    Liu Y; Han C; Lu T; Liu Y; Chen H; Yang C; Tu Y; Li Y
    Int J Biol Macromol; 2021 Nov; 190():463-473. PubMed ID: 34506859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Various machine learning approaches coupled with molecule simulation in the screening of natural compounds with xanthine oxidase inhibitory activity.
    Zhou Q; Yin JY; Liang WY; Chen DM; Yuan Q; Feng BL; Zhang YH; Wang YT
    Food Funct; 2021 Mar; 12(4):1580-1589. PubMed ID: 33470259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olea europaea leaf (Ph.Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase.
    Flemmig J; Kuchta K; Arnhold J; Rauwald HW
    Phytomedicine; 2011 May; 18(7):561-6. PubMed ID: 21144719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition.
    Joshi G; Sharma M; Kalra S; Gavande NS; Singh S; Kumar R
    Bioorg Chem; 2021 Feb; 107():104620. PubMed ID: 33454509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions.
    He W; Su G; Sun-Waterhouse D; Waterhouse GIN; Zhao M; Liu Y
    Food Chem; 2019 Jan; 272():453-461. PubMed ID: 30309568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, molecular docking and xanthine oxidase inhibitory activity of 5-aryl-1H-tetrazoles.
    Fatima I; Zafar H; Khan KM; Saad SM; Javaid S; Perveen S; Choudhary MI
    Bioorg Chem; 2018 Sep; 79():201-211. PubMed ID: 29772470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid:
    Chen J; Yu S; He Z; Zhu D; Cai X; Ruan Z; Jin N
    Curr Pharm Biotechnol; 2024; 25(4):477-487. PubMed ID: 37345239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Asphodelus microcarpus as a source of xanthine oxidase inhibitors: Insights from in silico and in vitro studies.
    Di Petrillo A; Siguri C; Delogu GL; Fais A; Era B; Floris S; Pintus F; Kumar A; Fantini MC; Olla S
    Chem Biol Interact; 2024 Jul; 397():111087. PubMed ID: 38823536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.
    Gao J; Liu X; Zhang B; Mao Q; Zhang Z; Zou Q; Dai X; Wang S
    Eur J Med Chem; 2020 Mar; 190():112077. PubMed ID: 32014678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phloroglucinol Derivatives from
    Yuk HJ; Kim JY; Sung YY; Kim DS
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383880
    [No Abstract]   [Full Text] [Related]  

  • 18. Study on the interaction mechanism between luteoloside and xanthine oxidase by multi-spectroscopic and molecular docking methods.
    Chen J; Wang Y; Pan X; Cheng Y; Liu J; Cao X
    J Mol Recognit; 2022 Dec; 35(12):e2985. PubMed ID: 35907782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Anti-Hyperuricemic Activity of Xanthine Oxidase Inhibitory Peptides from Pacific White Shrimp and Swimming Crab Based on Molecular Docking Screening.
    Mao Z; Jiang H; Mao X
    J Agric Food Chem; 2023 Jan; 71(3):1620-1627. PubMed ID: 36625439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Study of the Interaction between Xanthine Oxidase and Its Inhibitors from
    Wee SP; Loh KE; Lam KW; Ismail IS
    Metabolites; 2023 Jan; 13(1):. PubMed ID: 36677038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.