These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33642056)

  • 1. Reprint of "Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation".
    Huang X; Zhang L; Wen Z; Chen H; Li S; Ji G; Yin CC; Sun F
    Prog Biophys Mol Biol; 2021 Mar; 160():5-15. PubMed ID: 33642056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation.
    Huang X; Zhang L; Wen Z; Chen H; Li S; Ji G; Yin CC; Sun F
    Prog Biophys Mol Biol; 2020 Oct; 156():3-13. PubMed ID: 32758492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved holey carbon film for cryo-electron microscopy.
    Quispe J; Damiano J; Mick SE; Nackashi DP; Fellmann D; Ajero TG; Carragher B; Potter CS
    Microsc Microanal; 2007 Oct; 13(5):365-71. PubMed ID: 17900388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing Graphene Grids for Cryoelectron Microscopy.
    Fan H; Sun F
    Front Mol Biosci; 2022; 9():937253. PubMed ID: 35911962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene.
    Nickl P; Hilal T; Olal D; Donskyi IS; Radnik J; Ludwig K; Haag R
    Small; 2023 Feb; 19(8):e2205932. PubMed ID: 36507556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron cryo-microscopy of biological specimens on conductive titanium-silicon metal glass films.
    Rhinow D; Kühlbrandt W
    Ultramicroscopy; 2008 Jun; 108(7):698-705. PubMed ID: 18164549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DRPnet: automated particle picking in cryo-electron micrographs using deep regression.
    Nguyen NP; Ersoy I; Gotberg J; Bunyak F; White TA
    BMC Bioinformatics; 2021 Feb; 22(1):55. PubMed ID: 33557750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-negative staining.
    Adrian M; Dubochet J; Fuller SD; Harris JR
    Micron; 1998; 29(2-3):145-60. PubMed ID: 9684350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current limitations to high-resolution structure determination by single-particle cryoEM.
    D'Imprima E; Kühlbrandt W
    Q Rev Biophys; 2021 Mar; 54():e4. PubMed ID: 33704040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to achieve homogeneous dispersion of large transmembrane complexes within the holes of carbon films for electron cryomicroscopy.
    Cheung M; Kajimura N; Makino F; Ashihara M; Miyata T; Kato T; Namba K; Blocker AJ
    J Struct Biol; 2013 Apr; 182(1):51-6. PubMed ID: 23356983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction.
    Cabra V; Samsó M
    J Vis Exp; 2015 Jan; (95):52311. PubMed ID: 25651412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Need for Speed: Examining Protein Behavior during CryoEM Grid Preparation at Different Timescales.
    Klebl DP; Gravett MSC; Kontziampasis D; Wright DJ; Bon RS; Monteiro DCF; Trebbin M; Sobott F; White HD; Darrow MC; Thompson RF; Muench SP
    Structure; 2020 Nov; 28(11):1238-1248.e4. PubMed ID: 32814033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an optimum design for thin film phase plates.
    Rhinow D
    Ultramicroscopy; 2016 Jan; 160():1-6. PubMed ID: 26397752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches to altering particle distributions in cryo-electron microscopy sample preparation.
    Drulyte I; Johnson RM; Hesketh EL; Hurdiss DL; Scarff CA; Porav SA; Ranson NA; Muench SP; Thompson RF
    Acta Crystallogr D Struct Biol; 2018 Jun; 74(Pt 6):560-571. PubMed ID: 29872006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device.
    Marr CR; Benlekbir S; Rubinstein JL
    J Struct Biol; 2014 Jan; 185(1):42-7. PubMed ID: 24269484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Routine single particle CryoEM sample and grid characterization by tomography.
    Noble AJ; Dandey VP; Wei H; Brasch J; Chase J; Acharya P; Tan YZ; Zhang Z; Kim LY; Scapin G; Rapp M; Eng ET; Rice WJ; Cheng A; Negro CJ; Shapiro L; Kwong PD; Jeruzalmi D; des Georges A; Potter CS; Carragher B
    Elife; 2018 May; 7():. PubMed ID: 29809143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase.
    Joppe M; D'Imprima E; Salustros N; Paithankar KS; Vonck J; Grininger M; Kühlbrandt W
    IUCrJ; 2020 Mar; 7(Pt 2):220-227. PubMed ID: 32148850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Sample Support Films in Transmission Electron Microscopy using a Support Floatation Block.
    de Martín Garrido N; Ramlaul K; Aylett CHS
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33900294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids.
    Lahiri I; Xu J; Han BG; Oh J; Wang D; DiMaio F; Leschziner AE
    J Struct Biol; 2019 Sep; 207(3):270-278. PubMed ID: 31200019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy.
    Liu N; Zhang J; Chen Y; Liu C; Zhang X; Xu K; Wen J; Luo Z; Chen S; Gao P; Jia K; Liu Z; Peng H; Wang HW
    J Am Chem Soc; 2019 Mar; 141(9):4016-4025. PubMed ID: 30724081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.