These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33642553)
1. Altered Functional Connectivity of the Orbital Cortex and Striatum Associated with Catalepsy Induced by Dopamine D1 and D2 Antagonists. Niu M; Kasai A; Seiriki K; Hayashida M; Tanuma M; Yokoyama R; Hirato Y; Hashimoto H Biol Pharm Bull; 2021; 44(3):442-447. PubMed ID: 33642553 [TBL] [Abstract][Full Text] [Related]
2. Dopamine D1- and D2-dependent catalepsy in the rat requires functional NMDA receptors in the corpus striatum, nucleus accumbens and substantia nigra pars reticulata. Ozer H; Ekinci AC; Starr MS Brain Res; 1997 Nov; 777(1-2):51-9. PubMed ID: 9449412 [TBL] [Abstract][Full Text] [Related]
3. Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Baldo BA; Sadeghian K; Basso AM; Kelley AE Behav Brain Res; 2002 Dec; 137(1-2):165-77. PubMed ID: 12445722 [TBL] [Abstract][Full Text] [Related]
4. Specific involvement of striatal D1 and D2 dopamine receptors in the neuroleptic catalepsy in rats. Wardas J; Pietraszek M; Ossowska K; Wolfarth S Pol J Pharmacol; 1995; 47(4):349-53. PubMed ID: 8616516 [TBL] [Abstract][Full Text] [Related]
5. Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A(2A) receptors in the caudate-putamen of rats. Hauber W; Neuscheler P; Nagel J; Müller CE Eur J Neurosci; 2001 Oct; 14(8):1287-93. PubMed ID: 11703457 [TBL] [Abstract][Full Text] [Related]
6. Role of nucleus accumbens dopamine receptor subtypes in the learning and expression of alcohol-seeking behavior. Young EA; Dreumont SE; Cunningham CL Neurobiol Learn Mem; 2014 Feb; 108():28-37. PubMed ID: 23742917 [TBL] [Abstract][Full Text] [Related]
7. The neurokinin1 receptor antagonist CP-99,994 reduces catalepsy produced by the dopamine D2 receptor antagonist raclopride: correlation with extracellular acetylcholine levels in striatum. Anderson JJ; Randall S; Chase TN J Pharmacol Exp Ther; 1995 Aug; 274(2):928-36. PubMed ID: 7636756 [TBL] [Abstract][Full Text] [Related]
8. Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. Luo Z; Volkow ND; Heintz N; Pan Y; Du C J Neurosci; 2011 Sep; 31(37):13180-90. PubMed ID: 21917801 [TBL] [Abstract][Full Text] [Related]
9. Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys. Von Huben SN; Davis SA; Lay CC; Katner SN; Crean RD; Taffe MA Psychopharmacology (Berl); 2006 Nov; 188(4):586-96. PubMed ID: 16538469 [TBL] [Abstract][Full Text] [Related]
10. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates. Bruno JP; Byrnes EM; Johnson BJ Psychopharmacology (Berl); 1995 Nov; 122(1):85-94. PubMed ID: 8711069 [TBL] [Abstract][Full Text] [Related]
11. Atropine acts in the ventral striatum to reduce raclopride-induced catalepsy. Alcock SJ; Hemsley KM; Crocker AD Eur J Pharmacol; 2001 Jul; 424(3):179-87. PubMed ID: 11672560 [TBL] [Abstract][Full Text] [Related]
12. Dopaminergic and cholinergic interaction in cataleptic responses in mice. Ushijima I; Kawano M; Kaneyuki H; Suetsugi M; Usami K; Hirano H; Mizuki Y; Yamada M Pharmacol Biochem Behav; 1997 Sep; 58(1):103-8. PubMed ID: 9264077 [TBL] [Abstract][Full Text] [Related]
13. Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Papa SM; Engber TM; Boldry RC; Chase TN Eur J Pharmacol; 1993 Mar; 232(2-3):247-53. PubMed ID: 8385618 [TBL] [Abstract][Full Text] [Related]
14. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease. Paul ML; Graybiel AM; David JC; Robertson HA J Neurosci; 1992 Oct; 12(10):3729-42. PubMed ID: 1357113 [TBL] [Abstract][Full Text] [Related]
15. Dopamine receptor antagonist properties of S 14506, 8-OH-DPAT, raclopride and clozapine in rodents. Protais P; Chagraoui A; Arbaoui J; Mocaër E Eur J Pharmacol; 1994 Dec; 271(1):167-77. PubMed ID: 7698199 [TBL] [Abstract][Full Text] [Related]
16. Blockade of subthalamic dopamine D1 receptors elicits akinesia in rats. Hauber W Neuroreport; 1998 Dec; 9(18):4115-8. PubMed ID: 9926857 [TBL] [Abstract][Full Text] [Related]
17. The effect of dopamine receptor blockade on motor behavior in Aplysia californica. Flinn JM; Gochman P; Wanschura P; Chandhoke V Pharmacol Biochem Behav; 2001; 69(3-4):425-30. PubMed ID: 11509200 [TBL] [Abstract][Full Text] [Related]
18. Effects of cannabinoid receptor stimulation and blockade on catalepsy produced by dopamine receptor antagonists. Anderson JJ; Kask AM; Chase TN Eur J Pharmacol; 1996 Jan; 295(2-3):163-8. PubMed ID: 8720580 [TBL] [Abstract][Full Text] [Related]
19. L-type calcium channel blockade on haloperidol-induced c-Fos expression in the striatum. Lee J; Rushlow WJ; Rajakumar N Neuroscience; 2007 Nov; 149(3):602-16. PubMed ID: 17913375 [TBL] [Abstract][Full Text] [Related]
20. Role of amygdala dopamine D1 and D2 receptors in the acquisition and expression of fructose-conditioned flavor preferences in rats. Bernal S; Miner P; Abayev Y; Kandova E; Gerges M; Touzani K; Sclafani A; Bodnar RJ Behav Brain Res; 2009 Dec; 205(1):183-90. PubMed ID: 19573566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]