These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3364260)

  • 1. Fiber optic surface fluorometry/reflectometry and 31-p-NMR for monitoring the intracellular energy state in vivo.
    Mayevsky A; Nioka S; Chance B
    Adv Exp Med Biol; 1988; 222():365-74. PubMed ID: 3364260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer.
    Mayevsky A; Chance B
    Science; 1982 Aug; 217(4559):537-40. PubMed ID: 7201167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry.
    Mayevsky A
    Brain Res; 1984 Mar; 319(1):49-68. PubMed ID: 6370376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functioning gerbil brain in vivo. Correlation between 31P NMR spectroscopy and the multiparametric monitoring approach.
    Mayevsky A; Nioka S; Wang DJ; Chance B
    Adv Exp Med Biol; 1997; 411():41-53. PubMed ID: 9269410
    [No Abstract]   [Full Text] [Related]  

  • 5. Fiber optic surface fluorometry-reflectometry technique in the renal physiology of rats.
    Zurovsky Y; Sonn J
    J Basic Clin Physiol Pharmacol; 1992; 3(4):343-58. PubMed ID: 1308774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system.
    Mayevsky A; Walden R; Pewzner E; Deutsch A; Heldenberg E; Lavee J; Tager S; Kachel E; Raanani E; Preisman S; Glauber V; Segal E
    J Biomed Opt; 2011 Jun; 16(6):067004. PubMed ID: 21721825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.
    Mayevsky A; Nioka S; Subramanian VH; Chance B
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):201-7. PubMed ID: 3343295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated in vivo 31P-NMR and NADH fluorometric studies on gerbil brain in graded hypoxia and hyperoxia.
    Gyulai L; Chance B; Ligeti L; McDonald G; Cone J
    Am J Physiol; 1988 May; 254(5 Pt 1):C699-708. PubMed ID: 3364555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The simultaneous measurements of tissue oxygen concentration and energy state by near-infrared and nuclear magnetic resonance spectroscopy.
    Tamura M; Hazeki O; Nioka S; Chance B; Smith DS
    Adv Exp Med Biol; 1988; 222():359-63. PubMed ID: 3364259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially resolved 31P NMR spectroscopy of organs in animal models and man.
    Styles P; Blackledge MJ; Moonen CT; Radda GK
    Ann N Y Acad Sci; 1987; 508():349-59. PubMed ID: 3439708
    [No Abstract]   [Full Text] [Related]  

  • 11. The oxygen dependence of the energy state of cardiac tissue: 31P-NMR and optical measurement of myoglobin in perfused rat heart.
    Fukuda H; Yasuda H; Shimokawa S; Tamura M
    Adv Exp Med Biol; 1989; 248():567-73. PubMed ID: 2551137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies.
    Mayevsky A; Rogatsky GG
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C615-40. PubMed ID: 16943239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR.
    Eskey CJ; Koretsky AP; Domach MM; Jain RK
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2646-50. PubMed ID: 8464871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance spectroscopy and the study of tissue oxygen metabolism: a review.
    Vink R
    Adv Exp Med Biol; 1992; 316():187-93. PubMed ID: 1337650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo time-resolved brain phosphorus nuclear magnetic resonance.
    Hilberman M; Subramanian VH; Haselgrove J; Cone JB; Egan JW; Gyulai L; Chance B
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):334-42. PubMed ID: 6470052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 31P-NMR study of tissue respiration in working dog muscle during reduced O2 delivery conditions.
    Hogan MC; Nioka S; Brechue WF; Chance B
    J Appl Physiol (1985); 1992 Oct; 73(4):1662-70. PubMed ID: 1447118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive, nondestructive approaches to cell bioenergetics.
    Chance B; Eleff S; Leigh JS
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7430-4. PubMed ID: 6938983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system.
    Kraut A; Barbiro-Michaely E; Mayevsky A
    Med Sci Monit; 2004 Jul; 10(7):BR215-20. PubMed ID: 15232495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of propentofylline on energy metabolism of the ischemic brain studied by in vivo 31P nuclear magnetic resonance spectroscopy.
    Sasaki M; Naritomi H; Kanashiro M; Nishimura H; Sawada T
    Arzneimittelforschung; 1989 Aug; 39(8):886-9. PubMed ID: 2510744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose and energy metabolism in rat liver after ischemic damage assessed by 13 C and 31 P NMR spectroscopy.
    Morikawa S; Inubushi T; Takahashi K; Terada Y; Iwata S; Ozawa K
    J Surg Res; 1996 Jul; 63(2):393-9. PubMed ID: 8764641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.