BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33642615)

  • 1. Using High Molecular Precision to Study Enzymatically Induced Disassembly of Polymeric Nanocarriers: Direct Enzymatic Activation or Equilibrium-Based Degradation?
    Slor G; Amir RJ
    Macromolecules; 2021 Feb; 54(4):1577-1588. PubMed ID: 33642615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles.
    Segal M; Ozery L; Slor G; Wagle SS; Ehm T; Beck R; Amir RJ
    Biomacromolecules; 2020 Oct; 21(10):4076-4086. PubMed ID: 32833437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks.
    Slor G; Olea AR; Pujals S; Tigrine A; De La Rosa VR; Hoogenboom R; Albertazzi L; Amir RJ
    Biomacromolecules; 2021 Mar; 22(3):1197-1210. PubMed ID: 33512161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Dimerization of Polymeric Amphiphiles Acts as a Molecular Switch of Enzymatic Degradability.
    Rosenbaum I; Avinery R; Harnoy AJ; Slor G; Tirosh E; Hananel U; Beck R; Amir RJ
    Biomacromolecules; 2017 Oct; 18(10):3457-3468. PubMed ID: 28858524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles.
    Harnoy AJ; Buzhor M; Tirosh E; Shaharabani R; Beck R; Amir RJ
    Biomacromolecules; 2017 Apr; 18(4):1218-1228. PubMed ID: 28267318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Precision and Enzymatic Degradation: From Readily to Undegradable Polymeric Micelles by Minor Structural Changes.
    Segal M; Avinery R; Buzhor M; Shaharabani R; Harnoy AJ; Tirosh E; Beck R; Amir RJ
    J Am Chem Soc; 2017 Jan; 139(2):803-810. PubMed ID: 27990807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-Induced Architectural Transition as a Tool for Controlling the Enzymatic Degradability of Polymeric Micelles.
    Slor G; Tevet S; Amir RJ
    ACS Polym Au; 2022 Oct; 2(5):380-386. PubMed ID: 36855583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micellar Stability in Biological Media Dictates Internalization in Living Cells.
    Feiner-Gracia N; Buzhor M; Fuentes E; Pujals S; Amir RJ; Albertazzi L
    J Am Chem Soc; 2017 Nov; 139(46):16677-16687. PubMed ID: 29076736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates.
    Slor G; Papo N; Hananel U; Amir RJ
    Chem Commun (Camb); 2018 Jun; 54(50):6875-6878. PubMed ID: 29774332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture-Based Programming of Polymeric Micelles to Undergo Sequential Mesophase Transitions.
    Rathee P; Edelstein-Pardo N; Netti F; Adler-Abramovich L; Sitt A; Amir RJ
    ACS Macro Lett; 2023 Jun; 12(6):814-820. PubMed ID: 37272912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.
    Rosenbaum I; Harnoy AJ; Tirosh E; Buzhor M; Segal M; Frid L; Shaharabani R; Avinery R; Beck R; Amir RJ
    J Am Chem Soc; 2015 Feb; 137(6):2276-84. PubMed ID: 25607219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer-aggregate equilibrium.
    Gao J; Wang H; Zhuang J; Thayumanavan S
    Chem Sci; 2019 Mar; 10(10):3018-3024. PubMed ID: 30996882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers.
    Harnoy AJ; Rosenbaum I; Tirosh E; Ebenstein Y; Shaharabani R; Beck R; Amir RJ
    J Am Chem Soc; 2014 May; 136(21):7531-4. PubMed ID: 24568366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of photoisomerization on the enzymatic hydrolysis of polymeric micelles bearing photo-responsive azobenzene groups at their cores.
    Harnoy AJ; Slor G; Tirosh E; Amir RJ
    Org Biomol Chem; 2016 Jun; 14(24):5813-9. PubMed ID: 27093537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-Mediated Polymeric Micelle Drug Delivery.
    Xia H; Zhao Y; Tong R
    Adv Exp Med Biol; 2016; 880():365-84. PubMed ID: 26486348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular engineering of polymeric supra-amphiphiles.
    Chang Y; Jiao Y; Symons HE; Xu JF; Faul CFJ; Zhang X
    Chem Soc Rev; 2019 Feb; 48(4):989-1003. PubMed ID: 30681685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular Translation of Enzymatically Triggered Disassembly of Micelles into Tunable Fluorescent Responses.
    Buzhor M; Harnoy AJ; Tirosh E; Barak A; Schwartz T; Amir RJ
    Chemistry; 2015 Oct; 21(44):15633-8. PubMed ID: 26366522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.