These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33642706)

  • 21. ACE-DNV: Automatic classification of gaze events in dynamic natural viewing.
    Nejad A; de Haan GA; Heutink J; Cornelissen FW
    Behav Res Methods; 2024 Apr; 56(4):3300-3314. PubMed ID: 38448726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep-SAGA: a deep-learning-based system for automatic gaze annotation from eye-tracking data.
    Deane O; Toth E; Yeo SH
    Behav Res Methods; 2023 Apr; 55(3):1372-1391. PubMed ID: 35650384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using head-mounted eye-trackers to study sensory-motor dynamics of coordinated attention.
    Chen CH; Monroy C; Houston DM; Yu C
    Prog Brain Res; 2020; 254():71-88. PubMed ID: 32859294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. When I Look into Your Eyes: A Survey on Computer Vision Contributions for Human Gaze Estimation and Tracking.
    Cazzato D; Leo M; Distante C; Voos H
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic Influence on Eye Movements to Complex Scenes at Short Timescales.
    Kennedy DP; D'Onofrio BM; Quinn PD; Bölte S; Lichtenstein P; Falck-Ytter T
    Curr Biol; 2017 Nov; 27(22):3554-3560.e3. PubMed ID: 29129535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infant embodied attention in context: Feasibility of home-based head-mounted eye tracking in early infancy.
    Bradshaw J; Fu X; Yurkovic-Harding J; Abney D
    Dev Cogn Neurosci; 2023 Dec; 64():101299. PubMed ID: 37748360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active vision in freely moving marmosets using head-mounted eye tracking.
    Singh VP; Li J; Mitchell J; Miller C
    bioRxiv; 2024 May; ():. PubMed ID: 38766147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calibration-Free Mobile Eye-Tracking Using Corneal Imaging.
    Mokatren M; Kuflik T; Shimshoni I
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Event-Based Near-Eye Gaze Tracking Beyond 10,000 Hz.
    Angelopoulos AN; Martel JNP; Kohli AP; Conradt J; Wetzstein G
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2577-2586. PubMed ID: 33780340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stationary and ambulatory attention patterns are differentially associated with early temperamental risk for socioemotional problems: Preliminary evidence from a multimodal eye-tracking investigation.
    Fu X; Nelson EE; Borge M; Buss KA; Pérez-Edgar K
    Dev Psychopathol; 2019 Aug; 31(3):971-988. PubMed ID: 31097053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Etracker: A Mobile Gaze-Tracking System with Near-Eye Display Based on a Combined Gaze-Tracking Algorithm.
    Li B; Fu H; Wen D; Lo W
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medical documentation using a gaze-driven camera.
    Vockeroth J; Bartl K; Pfanzelt S; Schneider E
    Stud Health Technol Inform; 2009; 142():413-6. PubMed ID: 19377196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision.
    de Ruyter van Steveninck J; Nipshagen M; van Gerven M; Güçlü U; Güçlüturk Y; van Wezel R
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38502957
    [No Abstract]   [Full Text] [Related]  

  • 35. Comparison of three different eye-tracking tasks for distinguishing autistic from typically developing children and autistic symptom severity.
    Kou J; Le J; Fu M; Lan C; Chen Z; Li Q; Zhao W; Xu L; Becker B; Kendrick KM
    Autism Res; 2019 Oct; 12(10):1529-1540. PubMed ID: 31369217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Deep Learning-Based Approach to Video-Based Eye Tracking for Human Psychophysics.
    Zdarsky N; Treue S; Esghaei M
    Front Hum Neurosci; 2021; 15():685830. PubMed ID: 34366813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What children with and without ASD see: Similar visual experiences with different pathways through parental attention strategies.
    Perkovich E; Sun L; Mire S; Laakman A; Sakhuja U; Yoshida H
    Autism Dev Lang Impair; 2022; 7():23969415221137293. PubMed ID: 36518657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Offline Calibration for Infant Gaze and Head Tracking across a Wide Horizontal Visual Field.
    Capparini C; To MPS; Dardenne C; Reid VM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eye-Tracking Technology and the Dynamics of Natural Gaze Behavior in Sports: A Systematic Review of 40 Years of Research.
    Kredel R; Vater C; Klostermann A; Hossner EJ
    Front Psychol; 2017; 8():1845. PubMed ID: 29089918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eye tracking research to answer questions about augmentative and alternative communication assessment and intervention.
    Wilkinson KM; Mitchell T
    Augment Altern Commun; 2014 Jun; 30(2):106-19. PubMed ID: 24758526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.