These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3364283)

  • 21. The permeability of red blood cells to chloride, urea and water.
    Brahm J
    J Exp Biol; 2013 Jun; 216(Pt 12):2238-46. PubMed ID: 23470663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of diffusion boundary layers on the initial uptake of O2 by red cells. Theory versus experiment.
    Huxley VH; Kutchai H
    Microvasc Res; 1983 Jul; 26(1):89-107. PubMed ID: 6888290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical analysis of oxygen supply to contracted skeletal muscle.
    Groebe K; Thews G
    Adv Exp Med Biol; 1986; 200():495-514. PubMed ID: 3799342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The rate of oxygen uptake by human red blood cells.
    Coin JT; Olson JS
    J Biol Chem; 1979 Feb; 254(4):1178-90. PubMed ID: 762123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A graphical analysis of the influence of red cell transit time, carrier-free layer thickness, and intracellular PO2 on blood-tissue O2 transport.
    Gayeski TE; Federspiel WJ; Honig CR
    Adv Exp Med Biol; 1988; 222():25-35. PubMed ID: 3364248
    [No Abstract]   [Full Text] [Related]  

  • 26. An analysis of the stopped-flow kinetics of gaseous ligand uptake and release by adult mouse erythrocytes.
    Brittain T; Simpson R
    Biochem J; 1989 May; 260(1):171-6. PubMed ID: 2505748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The significant blood resistance to lung nitric oxide transfer lies within the red cell.
    Borland C; Bottrill F; Jones A; Sparkes C; Vuylsteke A
    J Appl Physiol (1985); 2014 Jan; 116(1):32-41. PubMed ID: 24265283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased hemoglobin O2 affinity does not improve O2 consumption in hypoxemia.
    Gutierrez G; Andry JM
    J Appl Physiol (1985); 1989 Feb; 66(2):837-43. PubMed ID: 2708212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exercise-induced increase of methaemoglobin concentration and low cooperativity in haemoglobin-oxygen binding at rest correlate with low oxygen consumption during maximal effort.
    Szydłowski E; Pawlak AL
    Biomed Biochim Acta; 1983; 42(11-12):S168-72. PubMed ID: 6675687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological and physiological factors affecting oxygen uptake and release by red blood cells.
    Vandegriff KD; Olson JS
    J Biol Chem; 1984 Oct; 259(20):12619-27. PubMed ID: 6490634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport.
    Chen X; Jaron D; Barbee KA; Buerk DG
    J Appl Physiol (1985); 2006 Feb; 100(2):482-92. PubMed ID: 16210436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries.
    Bateman RM; Sharpe MD; Jagger JE; Ellis CG
    Crit Care; 2015 Nov; 19():389. PubMed ID: 26537126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of red cell spacing and red cell movement upon oxygen release under conditions of maximally working skeletal muscle.
    Groebe K; Thews G
    Adv Exp Med Biol; 1989; 248():175-85. PubMed ID: 2782144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative description in three dimensions of oxygen uptake by human red blood cells.
    Vandegriff KD; Olson JS
    Biophys J; 1984 Apr; 45(4):825-35. PubMed ID: 6722268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen affinity and Bohr coefficients of dog blood.
    Reeves RB; Park JS; Lapennas GN; Olszowka AJ
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jul; 53(1):87-95. PubMed ID: 7118650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel device for measuring the effect of cholesterol on the release of oxygen from red blood cells into myocardial tissue.
    O'Dea T; Menchaca H; Shudy J; Rohde T; Michalek V; Fuller C; Buchwald H
    Biomed Instrum Technol; 2000; 34(4):283-92. PubMed ID: 11004999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data.
    Groebe K
    Biophys J; 1995 Apr; 68(4):1246-69. PubMed ID: 7787016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of Achievable Oxygen Consumption Following Transfusion With Rejuvenated Red Blood Cells.
    Srinivasan AJ; Kausch K; Inglut C; Gray A; Landrigan M; Poisson JL; Schroder JN; Welsby IJ
    Semin Thorac Cardiovasc Surg; 2018; 30(2):134-141. PubMed ID: 29432891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite.
    Vandegriff KD; Olson JS
    J Biol Chem; 1984 Oct; 259(20):12609-18. PubMed ID: 6490633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.