These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33642867)

  • 41. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development.
    Yang L; Hu Y; Liu Y; Zhang J; Ulstrup J; Molin S
    Environ Microbiol; 2011 Jul; 13(7):1705-17. PubMed ID: 21605307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Matrix exopolysaccharides; the sticky side of biofilm formation.
    Maunders E; Welch M
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28605431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Model of Chronic Equine Endometritis Involving a Pseudomonas aeruginosa Biofilm.
    Ferris RA; McCue PM; Borlee GI; Glapa KE; Martin KH; Mangalea MR; Hennet ML; Wolfe LM; Broeckling CD; Borlee BR
    Infect Immun; 2017 Dec; 85(12):. PubMed ID: 28970274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.
    Orr MW; Donaldson GP; Severin GB; Wang J; Sintim HO; Waters CM; Lee VT
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):E5048-57. PubMed ID: 26305945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High levels of cAMP inhibit Pseudomonas aeruginosa biofilm formation through reduction of the c-di-GMP content.
    Almblad H; Rybtke M; Hendiani S; Andersen JB; Givskov M; Tolker-Nielsen T
    Microbiology (Reading); 2019 Mar; 165(3):324-333. PubMed ID: 30663958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flagellar Stators Stimulate c-di-GMP Production by Pseudomonas aeruginosa.
    Baker AE; Webster SS; Diepold A; Kuchma SL; Bordeleau E; Armitage JP; O'Toole GA
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30642992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in
    Strempel N; Nusser M; Neidig A; Brenner-Weiss G; Overhage J
    Front Microbiol; 2017; 8():2311. PubMed ID: 29213262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development.
    Whiteley CG; Lee DJ
    Biotechnol Adv; 2015; 33(1):124-141. PubMed ID: 25499693
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.
    Lee K; Lee KM; Kim D; Yoon SS
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation.
    Groizeleau J; Rybtke M; Andersen JB; Berthelsen J; Liu Y; Yang L; Nielsen TE; Kaever V; Givskov M; Tolker-Nielsen T
    Microbiology (Reading); 2016 Oct; 162(10):1797-1807. PubMed ID: 27526691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery of Two Bacterial Nitric Oxide-Responsive Proteins and Their Roles in Bacterial Biofilm Regulation.
    Hossain S; Nisbett LM; Boon EM
    Acc Chem Res; 2017 Jul; 50(7):1633-1639. PubMed ID: 28605194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa.
    Visaggio D; Pasqua M; Bonchi C; Kaever V; Visca P; Imperi F
    Front Microbiol; 2015; 6():902. PubMed ID: 26379660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14.
    Strehmel J; Neidig A; Nusser M; Geffers R; Brenner-Weiss G; Overhage J
    Appl Environ Microbiol; 2015 Feb; 81(4):1274-85. PubMed ID: 25501476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria.
    Little DJ; Bamford NC; Pokrovskaya V; Robinson H; Nitz M; Howell PL
    J Biol Chem; 2014 Dec; 289(52):35907-17. PubMed ID: 25359777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peculiarities of biofilm formation by Paracoccus denitrificans.
    Morinaga K; Yoshida K; Takahashi K; Nomura N; Toyofuku M
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2427-2433. PubMed ID: 32002601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12.
    Yang Y; Li Y; Gao T; Zhang Y; Wang Q
    Res Microbiol; 2018; 169(4-5):205-213. PubMed ID: 29859892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand-Mediated Biofilm Formation via Enhanced Physical Interaction between a Diguanylate Cyclase and Its Receptor.
    Giacalone D; Smith TJ; Collins AJ; Sondermann H; Koziol LJ; O'Toole GA
    mBio; 2018 Jul; 9(4):. PubMed ID: 29991582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae.
    Tan JW; Wilksch JJ; Hocking DM; Wang N; Srikhanta YN; Tauschek M; Lithgow T; Robins-Browne RM; Yang J; Strugnell RA
    J Bacteriol; 2015 May; 197(9):1659-67. PubMed ID: 25733612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB.
    Fazli M; Rybtke M; Steiner E; Weidel E; Berthelsen J; Groizeleau J; Bin W; Zhi BZ; Yaming Z; Kaever V; Givskov M; Hartmann RW; Eberl L; Tolker-Nielsen T
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28419759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insulin treatment enhances pseudomonas aeruginosa biofilm formation by increasing intracellular cyclic di-GMP levels, leading to chronic wound infection and delayed wound healing.
    Wei Q; Zhang Z; Luo J; Kong J; Ding Y; Chen Y; Wang K
    Am J Transl Res; 2019; 11(6):3261-3279. PubMed ID: 31312343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.