These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33642982)

  • 1. The Neural Mechanisms of Tinnitus: A Perspective From Functional Magnetic Resonance Imaging.
    Hu J; Cui J; Xu JJ; Yin X; Wu Y; Qi J
    Front Neurosci; 2021; 15():621145. PubMed ID: 33642982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress in neural network mechanism of tinnitus using functional magnetic resonance imaging].
    Ren K; Liu H; Wang Y; Zhang W; Yang T; Xu L
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 Jul; 37(7):582-587. PubMed ID: 37549953
    [No Abstract]   [Full Text] [Related]  

  • 3. Using resting state functional connectivity to unravel networks of tinnitus.
    Husain FT; Schmidt SA
    Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research.
    Simonetti P; Oiticica J
    Int Arch Otorhinolaryngol; 2015 Jul; 19(3):259-65. PubMed ID: 26157502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review and Perspective on Brain Bases of Tinnitus.
    Husain FT; Khan RA
    J Assoc Res Otolaryngol; 2023 Dec; 24(6):549-562. PubMed ID: 37919556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tinnitus distress: a paradoxical attention to the sound?
    Kandeepan S; Maudoux A; Ribeiro de Paula D; Zheng JY; Cabay JE; Gómez F; Chronik BA; Ridder D; Vanneste S; Soddu A
    J Neurol; 2019 Sep; 266(9):2197-2207. PubMed ID: 31152296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks of tinnitus in humans: Elucidating severity and habituation.
    Husain FT
    Hear Res; 2016 Apr; 334():37-48. PubMed ID: 26415997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salience, emotion, and attention: The neural networks underlying tinnitus distress revealed using music and rest.
    Shahsavarani S; Schmidt SA; Khan RA; Tai Y; Husain FT
    Brain Res; 2021 Mar; 1755():147277. PubMed ID: 33422540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural activity underlying tinnitus generation: results from PET and fMRI.
    Lanting CP; de Kleine E; van Dijk P
    Hear Res; 2009 Sep; 255(1-2):1-13. PubMed ID: 19545617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.
    Chen YC; Xia W; Chen H; Feng Y; Xu JJ; Gu JP; Salvi R; Yin X
    Hum Brain Mapp; 2017 May; 38(5):2384-2397. PubMed ID: 28112466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tinnitus: therapeutic use of superficial brain stimulation.
    Langguth B; De Ridder D
    Handb Clin Neurol; 2013; 116():441-67. PubMed ID: 24112915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory-limbic interactions in chronic tinnitus: Challenges for neuroimaging research.
    Leaver AM; Seydell-Greenwald A; Rauschecker JP
    Hear Res; 2016 Apr; 334():49-57. PubMed ID: 26299843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.
    Lv H; Zhao P; Liu Z; Li R; Zhang L; Wang P; Yan F; Liu L; Wang G; Zeng R; Li T; Dong C; Gong S; Wang Z
    Hear Res; 2017 Mar; 346():55-61. PubMed ID: 28188881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replicability of Neural and Behavioral Measures of Tinnitus Handicap in Civilian and Military Populations: Preliminary Results.
    Husain FT; Schmidt SA; Tai Y; Granato EC; Ramos P; Sherman P; Esquivel C
    Am J Audiol; 2019 Apr; 28(1S):191-208. PubMed ID: 31022364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram.
    Qu T; Qi Y; Yu S; Du Z; Wei W; Cai A; Wang J; Nie B; Liu K; Gong S
    Neuroscience; 2019 Jun; 408():31-45. PubMed ID: 30946875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of sound therapy in tinnitus are characterized by altered limbic and auditory networks.
    Han L; Pengfei Z; Chunli L; Zhaodi W; Xindi W; Qian C; Shusheng G; Zhenchang W
    Brain Commun; 2020; 2(2):fcaa131. PubMed ID: 33134919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of noninvasive brain stimulation on neural connectivity in Tinnitus: A randomized trial.
    Roland LT; Peelle JE; Kallogjeri D; Nicklaus J; Piccirillo JF
    Laryngoscope; 2016 May; 126(5):1201-6. PubMed ID: 26422238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupted local neural activity and functional connectivity in subjective tinnitus patients: evidence from resting-state fMRI study.
    Han Q; Zhang Y; Liu D; Wang Y; Feng Y; Yin X; Wang J
    Neuroradiology; 2018 Nov; 60(11):1193-1201. PubMed ID: 30159629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception - identifying the core distress network.
    Mohan A; Davidson C; De Ridder D; Vanneste S
    Brain Imaging Behav; 2020 Feb; 14(1):289-307. PubMed ID: 30443893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.