These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33643248)
1. Microbial Communities in Flexible Biomethanation of Hydrogen Are Functionally Resilient Upon Starvation. Logroño W; Popp D; Nikolausz M; Kluge P; Harms H; Kleinsteuber S Front Microbiol; 2021; 12():619632. PubMed ID: 33643248 [No Abstract] [Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Microbial community redundance in biomethanation systems lead to faster recovery of methane production rates after starvation. Braga Nan L; Trably E; Santa-Catalina G; Bernet N; Delgenes JP; Escudie R Sci Total Environ; 2022 Jan; 804():150073. PubMed ID: 34517312 [TBL] [Abstract][Full Text] [Related]
4. Microbial Resource Management for Ex Situ Biomethanation of Hydrogen at Alkaline pH. Logroño W; Popp D; Kleinsteuber S; Sträuber H; Harms H; Nikolausz M Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32344539 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of in-situ hydrogen biomethanation at mesophilic and thermophilic temperatures. Jiang H; Wu F; Wang Y; Feng L; Zhou H; Li Y Bioresour Technol; 2021 Oct; 337():125455. PubMed ID: 34320739 [TBL] [Abstract][Full Text] [Related]
6. Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways. Bu F; Dong N; Kumar Khanal S; Xie L; Zhou Q Bioresour Technol; 2018 Oct; 266():364-373. PubMed ID: 29982059 [TBL] [Abstract][Full Text] [Related]
7. How Low Can You Go: Methane Production of Chen X; Ottosen LDM; Kofoed MVW Front Bioeng Biotechnol; 2019; 7():34. PubMed ID: 30899758 [TBL] [Abstract][Full Text] [Related]
8. Biomethanation processes: new insights on the effect of a high H Braga Nan L; Trably E; Santa-Catalina G; Bernet N; Delgenès JP; Escudié R Biotechnol Biofuels; 2020; 13():141. PubMed ID: 32793302 [TBL] [Abstract][Full Text] [Related]
9. Effect of Inoculum Microbial Diversity in Ex Situ Biomethanation of Hydrogen. Logroño W; Kluge P; Kleinsteuber S; Harms H; Nikolausz M Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421079 [TBL] [Abstract][Full Text] [Related]
10. Adaptation of a microbial community to demand-oriented biological methanation. Khesali Aghtaei H; Püttker S; Maus I; Heyer R; Huang L; Sczyrba A; Reichl U; Benndorf D Biotechnol Biofuels Bioprod; 2022 Nov; 15(1):125. PubMed ID: 36384582 [TBL] [Abstract][Full Text] [Related]
12. Ex-situ biomethanation for CO Thapa A; Jo H; Han U; Cho SK Biotechnol Adv; 2023 Nov; 68():108218. PubMed ID: 37481094 [TBL] [Abstract][Full Text] [Related]
13. Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics. Fontana A; Kougias PG; Treu L; Kovalovszki A; Valle G; Cappa F; Morelli L; Angelidaki I; Campanaro S Microbiome; 2018 Oct; 6(1):194. PubMed ID: 30368244 [TBL] [Abstract][Full Text] [Related]
14. Effects of pH on ex-situ biomethanation with hydrogenotrophic methanogens under thermophilic and extreme-thermophilic conditions. Chen L; Du S; Xie L J Biosci Bioeng; 2021 Feb; 131(2):168-175. PubMed ID: 33199191 [TBL] [Abstract][Full Text] [Related]
15. Temperature and Inoculum Origin Influence the Performance of Ex-Situ Biological Hydrogen Methanation. Figeac N; Trably E; Bernet N; Delgenès JP; Escudié R Molecules; 2020 Dec; 25(23):. PubMed ID: 33271799 [TBL] [Abstract][Full Text] [Related]
16. Wood-Ljungdahl pathway utilisation during in situ H de Jonge N; Poulsen JS; Vechi NT; Kofoed MVW; Nielsen JL Sci Total Environ; 2022 Feb; 806(Pt 3):151254. PubMed ID: 34710425 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the Ex Situ Biomethanation of Hydrogen and Carbon Dioxide in a Novel Meandering Plug Flow Reactor: Start-Up Phase and Flexible Operation. Hoffstadt K; Nikolausz M; Krafft S; Bonatelli ML; Kumar V; Harms H; Kuperjans I Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391651 [TBL] [Abstract][Full Text] [Related]
18. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells. Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567 [TBL] [Abstract][Full Text] [Related]
19. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Wang W; Xie L; Luo G; Zhou Q; Angelidaki I Bioresour Technol; 2013 Oct; 146():234-239. PubMed ID: 23941705 [TBL] [Abstract][Full Text] [Related]
20. Ex-situ biogas upgrading and enhancement in different reactor systems. Kougias PG; Treu L; Benavente DP; Boe K; Campanaro S; Angelidaki I Bioresour Technol; 2017 Feb; 225():429-437. PubMed ID: 27931939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]