These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33643902)
21. Predicting Zhang G; Cao Y; Zhang J; Ren J; Zhao Z; Zhang X; Li S; Deng L; Zhou J Am J Cancer Res; 2021; 11(2):546-560. PubMed ID: 33575086 [TBL] [Abstract][Full Text] [Related]
22. Predicting Tyrosine Kinase Inhibitor Treatment Response in Stage IV Lung Adenocarcinoma Patients With EGFR Mutation Using Model-Based Deep Transfer Learning. Hou R; Li X; Xiong J; Shen T; Yu W; Schwartz LH; Zhao B; Zhao J; Fu X Front Oncol; 2021; 11():679764. PubMed ID: 34354943 [TBL] [Abstract][Full Text] [Related]
23. Identifying epidermal growth factor receptor mutation status in patients with lung adenocarcinoma by three-dimensional convolutional neural networks. Xiong JF; Jia TY; Li XY; Yu W; Xu ZY; Cai XW; Fu L; Zhang J; Qin BJ; Fu XL; Zhao J Br J Radiol; 2018 Dec; 91(1092):20180334. PubMed ID: 30059241 [TBL] [Abstract][Full Text] [Related]
24. Radiomics Signature as a Predictive Factor for EGFR Mutations in Advanced Lung Adenocarcinoma. Hong D; Xu K; Zhang L; Wan X; Guo Y Front Oncol; 2020; 10():28. PubMed ID: 32082997 [No Abstract] [Full Text] [Related]
25. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Wang S; Shi J; Ye Z; Dong D; Yu D; Zhou M; Liu Y; Gevaert O; Wang K; Zhu Y; Zhou H; Liu Z; Tian J Eur Respir J; 2019 Mar; 53(3):. PubMed ID: 30635290 [TBL] [Abstract][Full Text] [Related]
26. EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma. Chen Q; Li Y; Cheng Q; Van Valkenburgh J; Sun X; Zheng C; Zhang R; Yuan R Onco Targets Ther; 2022; 15():597-608. PubMed ID: 35669165 [TBL] [Abstract][Full Text] [Related]
27. [Application of radiomics captured from CT to predict the EGFR mutation status and TKIs therapeutic sensitivity of advanced lung adenocarcinoma]. Yang CS; Chen WD; Gong GZ; Li ZJ; Qiu QT; Yin Y Zhonghua Zhong Liu Za Zhi; 2019 Apr; 41(4):282-287. PubMed ID: 31014053 [No Abstract] [Full Text] [Related]
28. Deep Learning to Predict EGFR Mutation and PD-L1 Expression Status in Non-Small-Cell Lung Cancer on Computed Tomography Images. Wang C; Xu X; Shao J; Zhou K; Zhao K; He Y; Li J; Guo J; Yi Z; Li W J Oncol; 2021; 2021():5499385. PubMed ID: 35003258 [TBL] [Abstract][Full Text] [Related]
29. CT Radiomics in Predicting EGFR Mutation in Non-small Cell Lung Cancer: A Single Institutional Study. Wu S; Shen G; Mao J; Gao B Front Oncol; 2020; 10():542957. PubMed ID: 33117680 [No Abstract] [Full Text] [Related]
30. Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus Autoimmune Pancreatitis (AIP). Ziegelmayer S; Kaissis G; Harder F; Jungmann F; Müller T; Makowski M; Braren R J Clin Med; 2020 Dec; 9(12):. PubMed ID: 33322559 [TBL] [Abstract][Full Text] [Related]
31. The Potential of Radiomics Nomogram in Non-invasively Prediction of Epidermal Growth Factor Receptor Mutation Status and Subtypes in Lung Adenocarcinoma. Zhao W; Wu Y; Xu Y; Sun Y; Gao P; Tan M; Ma W; Li C; Jin L; Hua Y; Liu J; Li M Front Oncol; 2019; 9():1485. PubMed ID: 31993370 [No Abstract] [Full Text] [Related]
32. Deep Learning Radiomics to Predict PTEN Mutation Status From Magnetic Resonance Imaging in Patients With Glioma. Chen H; Lin F; Zhang J; Lv X; Zhou J; Li ZC; Chen Y Front Oncol; 2021; 11():734433. PubMed ID: 34671557 [TBL] [Abstract][Full Text] [Related]
33. Lung cancer histology classification from CT images based on radiomics and deep learning models. Marentakis P; Karaiskos P; Kouloulias V; Kelekis N; Argentos S; Oikonomopoulos N; Loukas C Med Biol Eng Comput; 2021 Jan; 59(1):215-226. PubMed ID: 33411267 [TBL] [Abstract][Full Text] [Related]
34. [The value of CT radiomics in the prediction of EGFR mutation in lung cancer]. Yu YX; Wang XM; Shi C; Hu S; Hu CH Zhonghua Yi Xue Za Zhi; 2020 Mar; 100(9):690-695. PubMed ID: 32187913 [No Abstract] [Full Text] [Related]
35. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. Jiang YQ; Cao SE; Cao S; Chen JN; Wang GY; Shi WQ; Deng YN; Cheng N; Ma K; Zeng KN; Yan XJ; Yang HZ; Huan WJ; Tang WM; Zheng Y; Shao CK; Wang J; Yang Y; Chen GH J Cancer Res Clin Oncol; 2021 Mar; 147(3):821-833. PubMed ID: 32852634 [TBL] [Abstract][Full Text] [Related]
36. GMILT: A Novel Transformer Network That Can Noninvasively Predict EGFR Mutation Status. Zhao W; Chen W; Li G; Lei D; Yang J; Chen Y; Jiang Y; Wu J; Ni B; Sun Y; Wang S; Sun Y; Li M; Liu J IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7324-7338. PubMed ID: 35862326 [TBL] [Abstract][Full Text] [Related]
37. Implementation strategy of a CNN model affects the performance of CT assessment of EGFR mutation status in lung cancer patients. Xiong J; Li X; Lu L; Lawrence SH; Fu X; Zhao J; Zhao B IEEE Access; 2019; 7():64583-64591. PubMed ID: 32953368 [TBL] [Abstract][Full Text] [Related]
38. Identification of Stage IIIC/IV EGFR-Mutated Non-Small Cell Lung Cancer Populations Sensitive to Targeted Therapy Based on a PET/CT Radiomics Risk Model. Shao D; Du D; Liu H; Lv J; Cheng Y; Zhang H; Lv W; Wang S; Lu L Front Oncol; 2021; 11():721318. PubMed ID: 34796106 [TBL] [Abstract][Full Text] [Related]
39. Non-invasive, fast, and high-performance EGFR gene mutation prediction method based on deep transfer learning and model stacking for patients with Non-Small Cell Lung Cancer. Benfares A; Mourabiti AY; Alami B; Boukansa S; El Bouardi N; Lamrani MYA; El Fatimi H; Amara B; Serraj M; Mohammed S; Abdeljabbar C; Anass EA; Qjidaa M; Maaroufi M; Mohammed OJ; Hassan Q Eur J Radiol Open; 2024 Dec; 13():100601. PubMed ID: 39351523 [TBL] [Abstract][Full Text] [Related]
40. Prediction of EGFR Mutation Status Based on Yin G; Wang Z; Song Y; Li X; Chen Y; Zhu L; Su Q; Dai D; Xu W Front Oncol; 2021; 11():709137. PubMed ID: 34367993 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]