These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 33644024)

  • 1. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities.
    Mishra S; Lin Z; Pang S; Zhang W; Bhatt P; Chen S
    Front Bioeng Biotechnol; 2021; 9():632059. PubMed ID: 33644024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An innovative approach of bioremediation in enzymatic degradation of xenobiotics.
    Rathore S; Varshney A; Mohan S; Dahiya P
    Biotechnol Genet Eng Rev; 2022 Apr; 38(1):1-32. PubMed ID: 35081881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into the success of xenobiotic degraders resolved from metagenomes of microbial enrichment cultures.
    Li J; Jia C; Lu Q; Hungate BA; Dijkstra P; Wang S; Wu C; Chen S; Li D; Shim H
    J Hazard Mater; 2021 Sep; 418():126384. PubMed ID: 34329005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach.
    Miglani R; Parveen N; Kumar A; Ansari MA; Khanna S; Rawat G; Panda AK; Bisht SS; Upadhyay J; Ansari MN
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiamine-Mediated Microbial Interaction between Auxotrophic Rhodococcus ruber ZM07 and Prototrophic Cooperators in the Tetrahydrofuran-Degrading Microbial Community H-1.
    Huang H; Wu H; Qi M; Wang H; Lu Z
    Microbiol Spectr; 2023 Jun; 11(3):e0454122. PubMed ID: 37125924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional metagenomic landscape of polluted river reveals potential genes involved in degradation of xenobiotic pollutants.
    Yadav R; Rajput V; Dharne M
    Environ Res; 2021 Jan; 192():110332. PubMed ID: 33068578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of microorganisms in petroleum degradation: Current development and prospects.
    Chunyan X; Qaria MA; Qi X; Daochen Z
    Sci Total Environ; 2023 Mar; 865():161112. PubMed ID: 36586680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites.
    Desai C; Pathak H; Madamwar D
    Bioresour Technol; 2010 Mar; 101(6):1558-69. PubMed ID: 19962886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era.
    Laczi K; Erdeiné Kis Á; Szilágyi Á; Bounedjoum N; Bodor A; Vincze GE; Kovács T; Rákhely G; Perei K
    Front Microbiol; 2020; 11():590049. PubMed ID: 33304336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omics Approaches to Pesticide Biodegradation.
    Rodríguez A; Castrejón-Godínez ML; Salazar-Bustamante E; Gama-Martínez Y; Sánchez-Salinas E; Mussali-Galante P; Tovar-Sánchez E; Ortiz-Hernández ML
    Curr Microbiol; 2020 Apr; 77(4):545-563. PubMed ID: 32078006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability.
    Sharma P; Singh SP; Iqbal HMN; Tong YW
    Environ Res; 2022 Aug; 211():113102. PubMed ID: 35300964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment.
    Gangola S; Bhatt P; Kumar AJ; Bhandari G; Joshi S; Punetha A; Bhatt K; Rene ER
    Chemosphere; 2022 Jun; 296():133916. PubMed ID: 35149016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advancements, and environmental fate.
    Vijayanand M; Ramakrishnan A; Subramanian R; Issac PK; Nasr M; Khoo KS; Rajagopal R; Greff B; Wan Azelee NI; Jeon BH; Chang SW; Ravindran B
    Environ Res; 2023 Jun; 227():115716. PubMed ID: 36940816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the degradation of synthetic pollutants in contaminated environments.
    Bhatt P; Gangola S; Bhandari G; Zhang W; Maithani D; Mishra S; Chen S
    Chemosphere; 2021 Apr; 268():128827. PubMed ID: 33162154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of composting strategies on the treatment of soils contaminated with organic pollutants.
    Semple KT; Reid BJ; Fermor TR
    Environ Pollut; 2001; 112(2):269-83. PubMed ID: 11234545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomics: Probing pollutant fate in natural and engineered ecosystems.
    Bouhajja E; Agathos SN; George IF
    Biotechnol Adv; 2016 Dec; 34(8):1413-1426. PubMed ID: 27825829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Herbicide bioremediation: from strains to bacterial communities.
    Pileggi M; Pileggi SAV; Sadowsky MJ
    Heliyon; 2020 Dec; 6(12):e05767. PubMed ID: 33392402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm formation in xenobiotic-degrading microorganisms.
    Bhatt P; Bhatt K; Huang Y; Li J; Wu S; Chen S
    Crit Rev Biotechnol; 2023 Dec; 43(8):1129-1149. PubMed ID: 36170978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation.
    Widada J; Nojiri H; Omori T
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):45-59. PubMed ID: 12382041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review.
    Cycoń M; Piotrowska-Seget Z
    Front Microbiol; 2016; 7():1463. PubMed ID: 27695449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.