These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 33644024)

  • 41. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms.
    Zhong J; Wu S; Chen WJ; Huang Y; Lei Q; Mishra S; Bhatt P; Chen S
    Chemosphere; 2023 Jun; 326():138390. PubMed ID: 36935058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes.
    Stenuit B; Eyers L; Schuler L; Agathos SN; George I
    Biotechnol Adv; 2008; 26(6):561-75. PubMed ID: 18725284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular aspects of pesticide degradation by microorganisms.
    Kumar S; Mukerji KG; Lal R
    Crit Rev Microbiol; 1996; 22(1):1-26. PubMed ID: 8729958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview.
    Rahman MU; Ullah MW; Shah JA; Sethupathy S; Bilal H; Abdikakharovich SA; Khan AU; Khan KA; Elboughdiri N; Zhu D
    Sci Total Environ; 2024 Mar; 918():170498. PubMed ID: 38307266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives.
    Mukherjee S; Sarkar B; Aralappanavar VK; Mukhopadhyay R; Basak BB; Srivastava P; Marchut-Mikołajczyk O; Bhatnagar A; Semple KT; Bolan N
    Environ Pollut; 2022 Sep; 308():119609. PubMed ID: 35700879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbiology and Biochemistry of Pesticides Biodegradation.
    Guerrero Ramírez JR; Ibarra Muñoz LA; Balagurusamy N; Frías Ramírez JE; Alfaro Hernández L; Carrillo Campos J
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils.
    Thelusmond JR; Strathmann TJ; Cupples AM
    Sci Total Environ; 2019 Mar; 657():1138-1149. PubMed ID: 30677881
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmid-mediated catabolism for the removal of xenobiotics from the environment.
    Bhatt P; Bhandari G; Bhatt K; Maithani D; Mishra S; Gangola S; Bhatt R; Huang Y; Chen S
    J Hazard Mater; 2021 Oct; 420():126618. PubMed ID: 34329102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in development of transgenic plants for remediation of xenobiotic pollutants.
    Eapen S; Singh S; D'Souza SF
    Biotechnol Adv; 2007; 25(5):442-51. PubMed ID: 17553651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Viable but Nonculturable State of Yeast
    Xie M; Xu L; Zhang R; Zhou Y; Xiao Y; Su X; Shen C; Sun F; Hashmi MZ; Lin H; Chen J
    Appl Environ Microbiol; 2021 Aug; 87(18):e0111021. PubMed ID: 34232723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics.
    Eyers L; George I; Schuler L; Stenuit B; Agathos SN; El Fantroussi S
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):123-30. PubMed ID: 15316685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in monitoring of catabolic genes during bioremediation.
    Jørgensen KS
    Indian J Microbiol; 2008 Jun; 48(2):152-5. PubMed ID: 23100709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids.
    Pang S; Lin Z; Zhang W; Mishra S; Bhatt P; Chen S
    Front Microbiol; 2020; 11():868. PubMed ID: 32508767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast.
    Bôto ML; Magalhães C; Perdigão R; Alexandrino DAM; Fernandes JP; Bernabeu AM; Ramos S; Carvalho MF; Semedo M; LaRoche J; Almeida CMR; Mucha AP
    Front Microbiol; 2021; 12():633659. PubMed ID: 33967978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding the fundamentals of microbial remediation with emphasize on metabolomics.
    Jeevanandam V; Osborne J
    Prep Biochem Biotechnol; 2022; 52(3):351-363. PubMed ID: 34338137
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioremediation via in situ microbial degradation of organic pollutants.
    Vogt C; Richnow HH
    Adv Biochem Eng Biotechnol; 2014; 142():123-46. PubMed ID: 24337042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential.
    Wiseschart A; Mhuantong W; Tangphatsornruang S; Chantasingh D; Pootanakit K
    BMC Microbiol; 2019 Jun; 19(1):144. PubMed ID: 31248378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus.
    Zampolli J; Zeaiter Z; Di Canito A; Di Gennaro P
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1069-1080. PubMed ID: 30554387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metagenomics-metabolomics analysis of microbial function and metabolism in petroleum-contaminated soil.
    Li YQ; Xin Y; Li C; Liu J; Huang T
    Braz J Microbiol; 2023 Jun; 54(2):935-947. PubMed ID: 37162704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent advances in glyphosate biodegradation.
    Zhan H; Feng Y; Fan X; Chen S
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5033-5043. PubMed ID: 29705962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.